<div> <div> <p>P T -symmetry — invariance with respect to combined space reflection P and time reversal T — provides a weaker condition than (Dirac) Hermiticity for ensuring a real energy spectrum of a general non-Hermitian Hamiltonian. PT -symmetric Hamiltonians therefore form an intermediate class between Hermitian and non-Hermitian Hamiltonians. In this work, we derive the conditions for PT-symmetry in the context of electronic structure theory, and specifically, within the Hartree–Fock (HF) approximation. We show that the HF orbitals are symmetric with respect to the P T operator if and only if the effective Fock Hamiltonian is PT -symmetric, and vice versa. By extension, if an optimal self-consistent solution is invariant under PT , then its eigenvalues and corresponding HF energy must be real. Moreover, we demonstrate how one can construct explicitly PT -symmetric Slater determinants by forming PT doublets (i.e. pairing each occupied orbital with its PT -transformed analogue), allowing PT -symmetry to be conserved throughout the self-consistent process. Finally, considering the H2 molecule as an illustrative example, we observe PT-symmetry in the HF energy landscape and find that the symmetry-broken unrestricted HF wave functions (i.e. diradical configurations) are P T -symmetric, while the symmetry-broken restricted HF wave functions (i.e. ionic configurations) break PT -symmetry.</p> </div> </div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.