In fact, most of information retrieval systems retrieve documents based on keywords matching, which are certainly fail at retrieving documents that have similar meaning with syntactical different keywords (form). One of the well-known approaches to overcome this limitation is query expansion (QE). There are several approaches in query expansion field such as statistical approach. This approach depends on term frequency to generate expansion features; nevertheless it does not consider meaning or term dependency. In addition, there are other approaches such as semantic approach which depends on a knowledge base that has a limited number of terms and relations. In this paper, researchers propose a hybrid approach for query expansion which utilizes both statistical and semantic approach. To select the optimal terms for query expansion, researchers propose an effective weighting method based on particle swarm optimization (PSO). A system prototype was implemented as a proof-of-concept, and its accuracy was evaluated. The experimental was carried out based on real dataset. The experimental results confirm that the proposed approach enhances the accuracy of query expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.