We employ an elastic line model to investigate the steady-state properties and non-equilibrium relaxation kinetics of magnetic vortex lines in disordered type-II superconductors using Langevin molecular dynamics (LMD). We extract the dependence of the mean vortex line velocity and gyration radius as well as the mean-square displacement in the steady state on the driving current, and measure the vortex density and height autocorrelations in the aging regime. We study samples with either randomly distributed pointlike or columnar attractive pinning centers, which allows us to distinguish the complex relaxation features of interacting flux lines subject to extended vs. uncorrelated disorder. Additionally, we find that our new LMD findings match earlier Monte Carlo (MC) simulation data well, verifying that these two microscopically quite distinct simulation methods lead to macroscopically very similar results for non-equilibrium vortex matter.
We study the effects of rapid temperature and magnetic field changes on the non-equilibrium relaxation dynamics of magnetic vortex lines in disordered type-II superconductors by employing an elastic line model and performing Langevin molecular dynamics simulations. In a previously equilibrated system, either the temperature is suddenly changed, or the magnetic field is instantaneously altered which is reflected in adding or removing flux lines to or from the system. The subsequent aging properties are investigated in samples with either randomly distributed point-like or extended columnar defects, which allows to distinguish the complex relaxation features that result from either type of pinning centers. One-time observables such as the radius of gyration and the fraction of pinned line elements are employed to characterize steady-state properties, and two-time correlation functions such as the vortex line height autocorrelations and their mean-square displacement are analyzed to study the non-linear stochastic relaxation dynamics in the aging regime.
We discuss the use of Langevin molecular dynamics in the investigation of the non-equilibrium properties of disordered vortex matter. Our special focus is set on values of system parameters that are realistic for disordered high-Tc superconductors such as YBCO. Using a discretized elastic line model, we study different aspects of vortices far from thermal equilibrium. On the one hand we investigate steady-state properties of driven magnetic flux lines in a disordered environment, namely the current-voltage characteristics, the gyration radius, and the pinning time statistics. On the other hand we study the complex relaxation processes and glassy-like dynamics that emerge in type-II superconductors due to the intricate competition between the long-range vortex-vortex repulsion and flux pinning due to randomly placed point defects. To this end we consider different types of sudden perturbations: temperature, magnetic field, and external current quenches.
Most of the consumed energy in Palestine comes from Israel. Meanwhile, the Israeli government controls the amount of electricity for Palestinians due to political reasons. This has led to many electricity shortages, prompting the Palestinians to invest in grid connected photovoltaic systems to mitigate electricity shortages. However, the lack of experience and loose energy policies have negatively affected the electricity distribution network in Palestine. Thus, this paper aims to discuss the current energy policy model for photovoltaic generation in Palestine and the challenges facing it. Moreover, 15 photovoltaic systems are selected in this research for technical and economical evaluation, to first show the typical performance of photovoltaic systems in Palestine, and second, to prove that there are failure cases in many systems due to a number of behavioral and structural barriers. Finally, the paper proposes a suggestion of unbundling transmission lines in the region to address the current critical status of photovoltaic investment in Palestine. As a result, the typical average yield factor of photovoltaic systems in Palestine is in the range of 1368–1816 kWh/kWp per year with a payback period of 5.5–7.4 years. However, the percentage of failure for the installed systems is found to be 47%. Meanwhile, the low awareness and lack of non-technical information are the main behavioral barriers, while grid infrastructure, lack of technical standards and staff training as well as loose and discouraging policies are the most dominant structural barriers.
We investigate the relaxation dynamics of magnetic vortex lines in type-II superconductors following rapid changes of the external driving current by means of an elastic line model simulated with Langevin molecular dynamics. A system of flux vortices in a sample with randomly distributed point-like defects is subjected to an external current of appropriate strength for a sufficient period of time so as to be in a moving non-equilibrium steady state. The current is then instantaneously lowered to a value that pertains to either the moving or pinned regime. The ensuing relaxation of the flux lines is studied via one-time observables such as their mean velocity and radius of gyration. We have in addition measured the two-time flux line height autocorrelation function to investigate dynamical scaling and aging behavior in the system, which in particular emerge after quenches into the glassy pinned state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.