Purpose. Recent advances in molecular diagnostic technologies allow for the evaluation of solid tumor malignancies through noninvasive blood sampling, including circulating tumor DNA profiling (ctDNA). Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, often because of late presentation of disease. Diagnosis is often made using endoscopic ultrasound or endoscopic retrograde cholangiopancreatography, which often does not yield enough tissue for next-generation sequencing. With this study, we sought to characterize the ctDNA genomic alteration landscape in patients with advanced PDAC with a focus on actionable findings. Materials and Methods. From December 2014 through October 2019, 357 samples collected from 282 patients with PDAC at Mayo Clinic underwent ctDNA testing using a clinically available assay. The majority of samples were tested using the 73gene panel which includes somatic genomic targets, including complete or critical exon coverage in 30 and 40 genes, respectively, and in some, amplifications, fusions, and indels. Clinical data and outcome variables were available for 165 patients; with 104 patients at initial presentation. Results. All patients included in this study had locally advanced or metastatic PDAC. Samples having at least one alteration, when variants of unknown significance (VUS) were excluded, numbered 266 (75%). After excluding VUS, therapeutically relevant alterations were observed in 170 (48%) of the total 357 cohort, including KRAS (G12C), EGFR, ATM, MYC, BRCA, PIK3CA, and BRAF mutations. KRAS, SMAD, CCND2, or TP53 alterations were seen in higher frequency in patients with advanced disease. Conclusion.Our study is the largest cohort to date that demonstrates the feasibility of ctDNA testing in PDAC. We provide a benchmark landscape upon which the field can continue to grow. Future applications may include use of ctDNA to guide treatment and serial monitoring of ctDNA during disease course to identify novel therapeutic targets for improved prognosis. The Oncologist 2021;25:1-10 Implications for Practice: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis often due to late presentation of disease. Biopsy tissue sampling is invasive and samples are often inadequate, requiring repeated invasive procedures and delays in treatment. Noninvasive methods to identify PDAC early in its course may improve prognosis in PDAC. Using ctDNA, targetable genes can be identified and used for treatment.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Clinical trials reporting the robust antitumor activity of immune checkpoint inhibitors (ICIs) in microsatellite instability-high (MSI-H) solid tumors have used tissue-based testing to determine the MSI-H status. This study assessed if MSI-H detected by a plasma-based circulating tumor DNA liquid biopsy test predicts robust response to ICI in patients with pancreatic ductal adenocarcinoma (PDAC). Retrospective analysis of patients with PDAC and MSI-H identified on Guardant360 from October 2018 to April 2021 was performed; clinical outcomes were submitted by treating providers. From 52 patients with PDAC +MSI-H, outcomes were available for 10 (19%) with a median age of 68 years (range: 56–82 years); the majority were male (80%) and had metastatic disease (80%). Nine of 10 patients were treated with ICI. Eight out of nine patients received single-agent pembrolizumab (8/9), while one received ipilimumab plus nivolumab. The overall response rate by Response Evaluation Criteria in Solid Tumors was 77% (7/9). The median progression-free survival and overall survival were not reached in this cohort. The median duration of treatment with ICI was 8 months (range: 1–24), and six out of seven responders continued to show response at the time of data cut-off after a median follow-up of 21 months (range: 11–33). Tissue-based MSI results were concordant with plasma-based G360 results in five of six patients (83%) who had tissue-based test results available, with G360 identifying one more patient with MSI-H than tissue testing. These results suggest that detecting MSI-H by a well-validated liquid biopsy test could predict a robust response to ICI in patients with PDAC. The use of liquid biopsy may expand the identification of PDAC patients with MSI-H tumors and enable treatment with ICI resulting in improved outcomes.
BackgroundPlasma-based circulating cell-free tumor DNA (ctDNA) genomic profiling by next-generation sequencing (NGS)is an emerging diagnostic tool for pancreatic cancer (PC). The impact of detected genomic alterations and variant allele fraction (VAF) in tumor response to systemic treatments and outcomes is under investigation.MethodsPatients with advanced PC who had ctDNA profiled at time of initial diagnosis were retrospectively evaluated. We considered the somatic alteration with the highest VAF as the dominant clone allele frequency (DCAF). ctDNA NGS results were related to clinical demographics, progression-free survival (PFS) and overall survival (OS).ResultsA total of 104 patients were evaluated. Somatic alterations were detected in 84.6% of the patients. Patients with ≥ 2 detectable genomic alterations had worse median PFS (p < 0.001) and worse median OS (p = 0.001). KRAS was associated with disease progression to systemic treatments (80.4% vs 19.6%, p = 0.006), worse median PFS (p < 0.001) and worse median OS (p = 0.002). TP53 was associated with worse median PFS (p = 0.02) and worse median OS (p = 0.001). The median DCAF was 0.45% (range 0-55%). DCAF >0.45% was associated with worse median PFS (p<0.0001) and median OS (p=0.0003). Patients that achieved clearance of KRAS had better PFS (p=0.047), while patients that achieved clearance of TP53 had better PFS (p=0.0056) and OS (p=0.037).ConclusionsInitial detection of ctDNA in advanced PC can identify somatic alterations that may help predict clinical outcomes. The dynamics of ctDNA are prognostic of outcomes and should be evaluated in prospective studies.
3040 Background: Pembrolizumab was recently FDA approved across solid tumors for TMB scores ≥ 10mut/Mb as assessed by next-generation sequencing (NGS) of tissue (tTMB). A prior study of advanced cancer patients treated with immunotherapy found that higher somatic TMB, as defined by the 80th percentile in each histology, was associated with better overall survival. Previously, bTMB assessed by ctDNA from patients with newly diagnosed advanced NSCLC at a score of 16 mut/MB correlated with a tTMB score of 10 mut/MB. TMB levels vary by cancer type, line of treatment, and therapy received; the distribution of bTMB scores across solid tumor types has not been well characterized. Here we report the distribution of bTMB scores in patients with advanced malignancies. Methods: We queried 5,610 samples from patients with different cancer types undergoing clinical cell-free DNA testing (Guardant360; Redwood City, CA) and assessed bTMB scores from October 2020 - January 2021. bTMB score was derived via a previously described computational algorithm examining the total number of synonymous and non-synonymous SNVs and indels across a 1.0MB genomic footprint. We assessed the success rate of bTMB evaluation, overlap with microsatellite instability (MSI) status, and defined the distribution of bTMB levels across indications in this dataset. Results: bTMB score was successfully assessed in 4,275/5,610 (76.3%) samples (Table). The majority of samples (58%) were tested at disease progression as compared to initial diagnosis (42%). The median turnaround time from sample receipt to clinical reporting was 11 days and decreased to 9 days over the course of the study. For the majority of cancer types the 80th percentile TMB was ≥ 16 mut/MB tissue equivalency. Conclusions: Our analysis demonstrates the feasibility of measuring bTMB using a commercially available liquid biopsy assay. bTMB scores trended higher than tTMB previously reported in these cancer types, reflecting the ability of ctDNA to better capture tumor heterogeneity. cfDNA may allow for exploration of bTMB evolution throughout treatment. TMB should be interpreted in the context of disease, treatment, and method; these data establish a pan-cancer benchmark for bTMB which will serve as a resource for further studies.[Table: see text]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.