The acoustic radiation pressure resulting from a plane wave incident on spherical shells and cylindrical shells immersed in a fluid is investigated theoretically in relation to the thickness of the shell and the contents of the hollow region. The results for the frequency dependence of acoustic radiation pressure computed on the basis of the theory are demonstrated for stainless shells with the hollow region filled water or air. Significant differences in acoustic radiation pressure occur when the interior region is changed from water to air.
Revealing the seasonal and interannual variations in forest canopy photosynthesis is a critical issue in understanding the ecological mechanisms underlying the dynamics of carbon dioxide exchange between the atmosphere and deciduous forests. This study examined the effects of temporal variations of canopy leaf area index (LAI) and leaf photosynthetic capacity [the maximum velocity of carboxylation (V (cmax))] on gross primary production (GPP) of a cool-temperate deciduous broadleaf forest for 5 years in Takayama AsiaFlux site, central Japan. We made two estimations to examine the effects of canopy properties on GPP; one is to incorporate the in situ observation of V (cmax) and LAI throughout the growing season, and another considers seasonality of LAI but constantly high V (cmax). The simulations indicated that variation in V (cmax) and LAI, especially in the leaf expansion period, had remarkable effects on GPP, and if V (cmax) was assumed constant GPP will be overestimated by 15%. Monthly examination of air temperature, radiation, LAI and GPP suggested that spring temperature could affect canopy phenology, and also that GPP in summer was determined mainly by incoming radiation. However, the consequences among these factors responsible for interannual changes of GPP are not straightforward since leaf expansion and senescence patterns and summer meteorological conditions influence GPP independently. This simulation based on in situ ecophysiological research suggests the importance of intensive consideration and understanding of the phenology of leaf photosynthetic capacity and LAI to analyze and predict carbon fixation in forest ecosystems.
The effects of the availability of light (high, medium and low) and soil water (wet and dry) on morphological and physiological traits responsible for whole plant carbon gain and ramet biomass accumulation were examined in a splitter-type clonal herbaceous species Primula sieboldii , a spring plant inhabiting broad range of light environments including open grassland and oak forest understory. Growth experiments were conducted for three genets originated from natural microhabitats differing in light and soil water availability. Ramets of a genet from high light and wet microhabitat, which were grown in low light (relative photon flux density: R-PPFD of 5%) showed 41% less light-saturated photosynthetic rate, 50% less dark respiration rate and earlier defoliation than the ramets in high light (R-PPFD of 61%). The estimation of daily photosynthesis revealed that the light acclimation response in leaf gas exchange contributes to efficient carbon gain of whole plants, irrespective of experimental light conditions. Water stress increased root weight ratio, decreased ramet leaf area, petiole length and photosynthetic capacity. These morphological effects of water stress were larger in high and medium light regimes than in low light regime. The consequence of the above responses was recognized in the relative growth rate of the ramets. The relative growth rate of the ramets in high light with wet regime was four-fold of that in low light plus wet regime, and was 1.5-fold of that in high light plus dry regime. However, even in low light and/or dry regimes, ramets kept positive relative growth rates and produced gemma successfully. We could not detect significant variation in growth responses among genets. The high photosynthetic plasticity revealed in the present study should enable Primula sieboldii to inhabit in a broad range of light and soil water availability.
The ecosystem carbon budget was estimated in a Japanese Zoysia japonica grassland. The green biomass started to grow in May and peaked from mid-July to September. Seasonal variations in soil CO(2) flux and root respiration were mediated by changes in soil temperature. Annual soil CO(2) flux was 1,121.4 and 1,213.6 g C m(-2) and root respiration was 471.0 and 544.3 g C m(-2) in 2007 and 2008, respectively. The root respiration contribution to soil CO(2) flux ranged from 33% to 71%. During the growing season, net primary production (NPP) was 747.5 and 770.1 g C m(-2) in 2007 and 2008, respectively. The biomass removed by livestock grazing (GL) was 122.1 and 102.7 g C m(-2), and the livestock returned 28.2 and 25.6 g C m(-2) as fecal input (FI) in 2007 and 2008, respectively. The decomposition of FI (DL, the dry weight loss due to decomposition) was very low, 1.5 and 1.4 g C m(-2), in 2007 and 2008. Based on the values of annual NPP, soil CO(2) flux, root respiration, GL, FI, and DL, the estimated carbon budget of the grassland was 1.7 and 22.3 g C m(-2) in 2007 and 2008, respectively. Thus, the carbon budget of this Z. japonica grassland ecosystem remained in equilibrium with the atmosphere under current grazing conditions over the 2 years of the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.