The prevalence of sour orange rootstock in the southern and eastern part of the Mediterranean Basin is presently threatened by the spread of Citrus Tristeza Virus (CTV) and its main vector Toxoptera citricida, combined with abiotic constraints such as drought, salinity and alkalinity. The search for alternative CTV-resistant rootstocks that also withstand the other constraints is now considered an urgent priority for a sustainable citrus industry in the area. Complementary progenitors can be found in citrus germplasm to combine the desired traits, particularly between Poncirus and Citrus genera. The production of somatic hybrids allows cumulating all dominant traits irrespective of their heterozygosity level, and would appear to be an effective way to solve the rootstock challenge facing the Mediterranean citrus industry. This paper presents the results obtained during a regional collaborative effort between five countries, to develop new rootstocks by somatic hybridization. New embryogenic callus lines to be used for somatic hybridization have been created. Protoplast fusions have been performed at CIRAD and IVIA laboratories, focusing on intergeneric combinations. Analysis of ploidy level by flow cytometry and molecular markers confirmed the acquisition of new interesting tetraploid somatic hybrids for six combinations. Diploid cybrids with intergeneric (Citrus × Poncirus) nucleus and C. reticulata or C. aurantifolia mitochondria were also identified for four combinations. The agronomical performance of a pre-existing somatic hybrid between Poncirus trifoliata and Citrus reticulata was validated in calcareous soils in Morocco. Somatic hybridization is now integrated into the breeding programs of the five Mediterranean countries.
Orange (Citrus sinensis) and grapefruit (Citrus paradise) peels were used as a source of pectin, which was extracted under different conditions. The peels are used under two states: fresh and residual (after essential oil extraction). Organic acid (citric acid) and mineral acid (sulfuric acid) were used in the pectin extraction. The aim of this study is the evaluation the effect of extraction conditions on pectin yield, degree of esterification “DE” and on molecular weight “Mw”. Results showed that the pectin yield was higher using the residual peels. Moreover, both peels allow the obtainment of a high methoxyl pectin with DE >50%. The molecular weight was calculated using Mark-Houwink-Sakurada equation which describes its relationship with intrinsic viscosity. This later was determined using four equations; Huggins equation, kramer, Schulz-Blaschke and Martin equation. The molecular weight varied from 1.538 x1005 to 2.47x1005 g/mol for grapefruit pectin and from 1.639 x1005 to 2.471 x1005 g/mol for orange pectin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.