At present, environmental issues become real critical barriers for many supply chain corporations concerning the sustainability of their businesses. In this context, several studies have been proposed from both academia and industry trying to develop new measurements related to green supply chain management (GSCM) practices to overcome these barriers, which will help create new environmental strategies, implementing those practices in their manufacturing processes. The objective of this study is to present the technical and analytical contribution that multi-criteria decision making analysis (MCDA) can bring to environmental decision making problems, and especially to GSCM field. For this reason, a multi-criteria decision-making methodology, combining fuzzy analytical hierarchy process and fuzzy technique for order preference by similarity to ideal solution (fuzzy TOPSIS), is proposed to contribute to a better understanding of new sustainable strategies through the identification and evaluation of the most appropriate GSCM practices to be adopted by industrial organizations. The fuzzy AHP process is used to construct hierarchies of the influential criteria, and then identify the importance weights of the selected criteria, while the fuzzy TOPSIS process employs these weighted criteria as inputs to evaluate and measure the performance of each alternative. To illustrate the effectiveness and performance of our MCDA approach, we have applied it to a chemical industry corporation located in Safi, Morocco.
Cloud computing gives another meaning to the word "sharing" in the world of networks. However, it gives rise to serious security problems. One of the techniques used by the attackers is the "Cloud cartography" which aims to locate a Virtual Machine in the cloud and launch a side channel attack.In this paper we propose a new technique for locating a virtual machine in a cloud environment. For this purpose, we will first trace the gateway of the cloud and then locate the target amongst the thousands of machines hosted in the cloud. Our attack is based on a new command TRACECL that can reach up to 100 routers, and we propose a method to locate the target Virtual Machine in a Cloud environment.
Undoubtedly, the advancements in Machine Learning (ML) and especially ensemble learning models enable researchers to develop numerous fields in ways we had never imagined before. Intrusion Detection System (IDS) is one of these fields that benefits from the aforementioned techniques to identify and classify the security threats with more accuracy. In fact, IDS technology has become an essential component for any defense strategy, since it provides a healthy environment for businesses. Besides, it protects future network infrastructures from intruders and suspicious network activities. In this context, this paper presents a systematic literature review on ensemble learning-based IDS and the datasets used to evaluate the proposed methods. Furthermore, we illustrate the distribution of the reviewed papers by year of publication, datasets utilized and ensemble learning methods. Finally, we discuss the finding of this review and highlight some limitations of the aforementioned models. The overall purpose of this literature review is to provide a guideline on how to choose ensemble learning models to solve IDS issues based on the most efficient and recent trends
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.