Molecular dynamics (MD) simulations and Brillouin light scattering (BLS) spectroscopy experiments have been carried to study the structure of sodium silicate glasses (SiO)(NaO), where X ranges from 0 to 45 at room temperature. The MD-obtained glass structures have been subjected to energy minimization at zero temperature to extract the elastic constants also obtained by BLS spectroscopy. The structures obtained are in good agreement with the structural experimental data realized by different techniques. The simulations show that the values of the elastic constants as a function of X (i.e., NaO mol %) agree well with those measured by BLS spectroscopy. The variations of elastic constants C and C as a function of NaO mol % are discussed and correlated to structural results and potential energies of oxygen atoms.
The intrinsic Brønsted acid strength in solid acids relates to the energy required to separate a proton from a conjugate base, for example a negatively charged zeolite framework. The reliable characterization of zeolites' intrinsic acidity is fundamental to the understanding of acid catalysis and setting in relation solid Brønsted acids with their activity and selectivity. Here, we report an infrared spectroscopic study with partial isotopic deuterium exchange of a series of 15 different acidic aluminosilicate materials, including ZSM-5 zeolites with very few defects. Varying Temperature Infrared spectroscopy (VTIR) permitted estimating activation energies for proton diffusion. Two different proton transfer mechanisms have been distinguished for two different temperature ranges. Si-rich zeolites appeared to be promising proton-transfer materials (E act. < 40 kJ mol −1 ) at temperatures above 150 °C (423 K). Further, a linear bathochromic shift of the Si−(OD)−Al stretching vibration as a function of temperature was observed. It can be assumed that this red-shift is related to the intrinsic O−(H/D) bond strength. This observation allowed the extrapolation and estimation of precise v(O−D)@0 K values, which could be attributed to distinct crystallographic locations through Density Functional Theory (DFT) calculations. The developed method was used to reliably determine the likelihood of the position of a proton in ZSM-5 zeolites under catalytically relevant conditions (T > 423 K), which has so far never been achieved by any other technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.