Network Function Virtualization (NFV) enables the virtualization of core-business network functions on top of a NFV infrastructure. NFV has gained an increasing attention in the telecommunication field these last few years. Virtual network functions (VNFs) can be represented by a set of virtual network function components (VNFCs). These VNFCs are typically designed with a redundancy scheme and need to be deployed against failures of, e.g., compute servers. However, such deployment must respect a particular resiliency mechanism for protection purposes. Therefore, choosing an efficient mapping of VNFCs to the compute servers is a challenging problem in the optimization of the software-defined, virtualization-based next generation of networks. In this paper, we model the problem of reliable VNFCs placement under anti-affinity constraints using several optimization techniques. A novel approach based on an extension of bin packing is proposed. We perform a comprehensive evaluation in terms of performance under realworld ISP networks along with synthetic traces. We show that our methods can calculate rapidly efficient solutions for large instances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.