We study the existence and the algorithmic aspect of a System of Generalized Mixed Equilibrium Problems involving variational-like inequalities (SGMEPs) in the setting of Banach spaces. The approach adopted is based on the auxiliary principle technique and arguments from generalized convexity. A new existence theorem for the auxiliary problem is established; this leads us to generate an algorithm which converges strongly to a solution of (SGMEP) under weaker assumptions. When the study is reduced to the setting of reflexive Banach spaces, then it can be more relaxed by dropping the coercivity condition. The results obtained in this paper are new and improve some recent studies in this field.
In this paper, we consider the evolutionary Navier-Stokes equations subject to the nonslip boundary condition together with a Clarke subdifferential relation between the dynamic pressure and the normal component of the velocity. Under the Rauch condition, we use the Galerkin approximation method and a weak precompactness criterion to ensure the convergence to a desired solution. Moreover, a control problem associated with such system of equations is studied with the help of a stability result with respect to the external forces. At the end of this paper, a more general condition due to Z. Naniewicz, namely the directional growth condition, is considered and all the results are reexamined.
In this paper we study existence, dependence and optimal control results concerning solutions to a class of hemivariational inequalities for stationary Navier-Stokes equations but without making use of the theory of pseudo-monotone operators. To do so, we consider a classical assumption, due to J. Rauch, which constrains us to make a slight change on the definition of a solution. The Rauch assumption,, although insure the existence of a solution, does not allow the conclusion that the non-convex functional is locally Lipschitz. Moreover, two dependence results are proved, one with respect to changes of the boundary condition and the other with respect to the density of external forces. The later one will be used to prove the existence of an optimal control to the distributed parameter optimal control problem where the control is represented by the external forces.
The Bénard problem consists in a system that couples the well-known Navier–Stokes equations and an advection-diffusion equation. In thin varying domains this leads to the g-Bénard problem, which turns out to be the classical Bénard problem when g is constant. The main goal of this paper is to, first of all, introduce the g-Bénard problem with time-fractional derivative of order $\alpha \in (0,1)$
α
∈
(
0
,
1
)
. This formulation is new even in the classical Bénard problem, that is with constant g. The second goal of this paper is to prove the existence and uniqueness of a weak solution by means of the Faedo–Galerkin approximation method. Some recent works on time-fractional Navier–Stokes equations have opened new perspectives in studying variational aspects in problems involving time-fractional derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.