The purpose of this study is to investigate computer vision and machine learning methods for classification of orthodontic images in order to provide orthodontists with a solution for multi-class classification of patients’ images to evaluate the evolution of their treatment. Of which, we proposed three algorithms based on extracted features, such as facial features and skin colour using YCbCrcolour space, assigned to nodes of a decision tree to classify orthodontic images: an algorithm for intra-oral images, an algorithm for mould images and an algorithm for extra-oral images. Then, we compared our method by implementing the Local Binary Pattern (LBP) algorithm to extract textural features from images. After that, we applied the principal component analysis (PCA) algorithm to optimize the redundant parameters in order to classify LBP features with six classifiers; Quadratic Support Vector Machine (SVM), Cubic SVM, Radial Basis Function SVM, Cosine K-Nearest Neighbours (KNN), Euclidian KNN, and Linear Discriminant Analysis (LDA). The presented algorithms have been evaluated on a dataset of images of 98 different patients, and experimental results demonstrate the good performances of our proposed method with a high accuracy compared with machine learning algorithms. Where LDA classifier achieves an accuracy of 84.5%.
This study proposes a new contribution to solve the problem of automatic landmarks detection in three-dimensional cephalometry. 3D images obtained from CBCT (cone beam computed tomography) equipment were used for automatic identification of twelve landmarks. The proposed method is based on a local geometry and intensity criteria of skull structures. After the step of preprocessing and binarization, the algorithm segments the skull into three structures using the geometry information of nasal cavity and intensity information of the teeth. Each targeted landmark was detected using local geometrical information of the volume of interest containing this landmark. The ICC and confidence interval (95% CI) for each direction were 0, 91 (0.75 to 0.96) for x- direction; 0.92 (0.83 to 0.97) for y-direction; 0.92 (0.79 to 0.97) for z-direction. The mean error of detection was calculated using the Euclidian distance between the 3D coordinates of manually and automatically detected landmarks. The overall mean error of the algorithm was 2.76 mm with a standard deviation of 1.43 mm. Our proposed approach for automatic landmark identification in 3D cephalometric was capable of detecting 12 landmarks on 3D CBCT images which can be facilitate the use of 3D cephalometry to orthodontists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.