Let (M<sub>2k</sub>,Φ,g) be an almost anti-paraKahler manifold and TM its tangent bundle equipped with the Berger type deformed Sasaki metric gBS and the paracomplex structure Φ<sub>˜</sub>. In this paper, we deal with the biharmonicity of canonical projection π : TM →M and a vector field X which is considered as a map X : M → TM.
PurposeLet (M, g) be a n-dimensional smooth Riemannian manifold. In the present paper, the authors introduce a new class of natural metrics denoted by gf and called gradient Sasaki metric on the tangent bundle TM. The authors calculate its Levi-Civita connection and Riemannian curvature tensor. The authors study the geometry of (TM, gf) and several important results are obtained on curvature, scalar and sectional curvatures.Design/methodology/approachIn this paper the authors introduce a new class of natural metrics called gradient Sasaki metric on tangent bundle.FindingsThe authors calculate its Levi-Civita connection and Riemannian curvature tensor. The authors study the geometry of (TM, gf) and several important results are obtained on curvature scalar and sectional curvatures.Originality/valueThe authors calculate its Levi-Civita connection and Riemannian curvature tensor. The authors study the geometry of (TM, gf) and several important results are obtained on curvature scalar and sectional curvatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.