SAMHD1 restricts human immunodeficiency virus-1 (HIV-1) infection of dendritic and other myeloid cells at an early stage in the replication cycle. SIVsm/HIV-2 lineage viruses counteract SAMHD1-mediated restriction by encoding Vpx, a virion-packaged accessory protein that targets SAMHD1 for degradation. We show that SAMHD1 restricts HIV-1 infection of monocyte-derived macrophages (MDM) by hydrolyzing the cellular deoxynucleotide triphosphates (dNTP), reducing their level to below that required for the synthesis of the viral genomic DNA. Vpx prevented the SAMHD1-mediated decrease in dNTP. The restriction was partially alleviated in MDM by the addition of exogenous deoxynucleosides. HIV-1 with a V148I mutation in reverse transcriptase that lowers its affinity for dNTP was particularly sensitive to SAMHD1-mediated restriction. Nucleotide starvation could serve as a mechanism to protect cells from infection by a wide variety of infectious agents that replicate through a DNA intermediate.
To evade host immune defences, human immunodeficiency viruses 1 and 2 (HIV-1 and HIV-2) have evolved auxiliary proteins that target cell restriction factors. Viral protein X (Vpx) from the HIV-2/SIVsmm lineage enhances viral infection by antagonizing SAMHD1 (refs ), but this antagonism is not sufficient to explain all Vpx phenotypes. Here, through a proteomic screen, we identified another Vpx target-HUSH (TASOR, MPP8 and periphilin)-a complex involved in position-effect variegation. HUSH downregulation by Vpx is observed in primary cells and HIV-2-infected cells. Vpx binds HUSH and induces its proteasomal degradation through the recruitment of the DCAF1 ubiquitin ligase adaptor, independently from SAMHD1 antagonism. As a consequence, Vpx is able to reactivate HIV latent proviruses, unlike Vpx mutants, which are unable to induce HUSH degradation. Although antagonism of human HUSH is not conserved among all lentiviral lineages including HIV-1, it is a feature of viral protein R (Vpr) from simian immunodeficiency viruses (SIVs) of African green monkeys and from the divergent SIV of l'Hoest's monkey, arguing in favour of an ancient lentiviral species-specific vpx/vpr gene function. Altogether, our results suggest the HUSH complex as a restriction factor, active in primary CD4 T cells and counteracted by Vpx, therefore providing a molecular link between intrinsic immunity and epigenetic control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.