Optical aberrations affect the quality of light propagating through a turbid medium, where refractive index is spatially inhomogeneous. In multiphoton optical applications, such as two-photon excitation fluorescence imaging and optogenetics, aberrations non-linearly impair the efficiency of excitation. We demonstrate a sensorless adaptive optics technique to compensate aberrations in holograms projected into turbid media. We use a spatial light modulator to project custom three dimensional holographic patterns and to correct for local (anisoplanatic) distortions. The method is tested on both synthetic and biological samples to counteract aberrations arising respectively from misalignment of the optical system and from samples inhomogeneities. In both cases the anisoplanatic correction improves the intensity of the stimulation pattern at least two-fold.
We propose a sensor-less adaptive optics approach to correct local aberrations in holograms used for two-photon stimulation. Our method showed intensity enhancement of about 60 % in holograms projected into fixed zebrafish tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.