The authors studied the differences between heat-shock/stress protein 70 (hsp70) gene expression and protein synthesis in the unilateral middle cerebral artery (MCA) microsurgical direct occlusion (Tamura's) model and the unilateral intraluminal occlusion model. In Tamura's model, expression of hsp70 mRNA and HSP70 protein and decreased protein synthesis were detected in the ischemic areas, including the ipsilateral cortex and caudate. These phenomena, however, were not observed in the areas outside the MCA territory, including the ipsilateral thalamus, hippocampus, and substantia nigra. These results were consistent among the experimental rats. In the intraluminal occlusion model, however, induction of both hsp70 mRNA and HSP70 protein and impairment of protein synthesis were noted in the areas outside the MCA territory, including the ipsilateral thalamus, hypothalamus, hippocampus, and substantia nigra, as well as in the MCA territory, including the ipsilateral cortex and caudate. These results were not consistent among the experimental rats. These different results might be due to widespread damage resulting from internal carotid artery (ICA) occlusion in the intraluminal occlusion model. Accordingly, the authors suggest that this model be called an ICA occlusion model, rather than a pure MCA occlusion model.
Following brief cerebral ischemia, tolerance to subsequent ischemia is induced in the hippocampal neurons. In this experiment, recovery of protein synthesis was investigated autoradiographically in gerbils with induced tolerance. The animals were subjected to single forebrain ischemia for 5 min (5-min ischemia group) or 2 min (2-min ischemia group). To observe the effect of tolerance acquisition, double forebrain ischemia (double ischemia group), 2-min ischemia followed by 5-min ischemia was induced 2 days later. At various recirculation periods (90 min, 6 h, 1 day, and 4 days following ischemia), animals received a single dose of L-[2,3-3H]valine. In the 5-min ischemia group, protein synthesis in the CA1 sector was severely suppressed during the period from 90 min to 1 day of recirculation and never returned to the normal level even at 4 day of recirculation. In the 2-min ischemia group, protein synthesis recovered gradually and returned to near normal at 4 days of recirculation. On the other hand, in the double ischemia group, recovery of protein synthesis in the CA1 sector was rapid. At 1 day of recirculation, protein synthesis returned to near normal. Protein synthesis in the CA2 sector was inhibited during the 4 days of recirculation in this group. The present study revealed an early recovery of protein synthesis in the hippocampal CA1 neurons in the gerbil with induced tolerance. We suggest that recovery of protein synthesis is essential for the survival of neurons exposed to transient ischemia.
Changes of the xanthine and uric acid (UA) levels in rat forebrain following focal cerebral ischemia were studied by reversed-phase HPLC with electrochemical detection. Focal ischemia was induced by occluding the left middle cerebral artery in the rat. The xanthine level in the normal group was 11.50 nmol/g tissue. In the ischemic group, the xanthine concentration in the ischemic hemisphere progressively increased after occlusion and reached a maximum value of 59.42 nmol/g tissue 4 h after operation. The UA level in the normal group was 2.20 nmol/g tissue, whereas in the ischemic group the UA concentration in the ischemic hemisphere gradually increased after occlusion, reaching a value of 38.53 nmol/g tissue 24 h after ischemia. The concentration of UA remained elevated in the ischemic hemisphere until 48 h after occlusion, and reached a maximum value of 38.98 nmol/g tissue. The xanthine and UA levels in the contralateral hemisphere remained unchanged. The xanthine and UA concentrations in the sham-operated group did not show a significant increase after operation. The time course of xanthine and UA levels suggests that in ischemic forebrain UA is formed from xanthine as a product of purine metabolism.
The authors studied the differences between heat-shock/stress protein 70 (hsp70) gene expression and protein synthesis in the unilateral middle cerebral artery (MCA) microsurgical direct occlusion (Tamura's) model and the unilateral intraluminal occlusion model. In Tamura's model, expression of hsp70 mRNA and HSP70 protein and decreased protein synthesis were detected in the ischemic areas, including the ipsilateral cortex and caudate. These phenomena, however, were not observed in the areas outside the MCA territory, including the ipsilateral thalamus, hippocampus, and substantia nigra. These results were consistent among the experimental rats. In the intraluminal occlusion model, however, induction of both hsp70 mRNA and HSP70 protein and impairment of protein synthesis were noted in the areas outside the MCA territory, including the ipsilateral thalamus, hypothalamus, hippocampus, and substantia nigra, as well as in the MCA territory, including the ipsilateral cortex and caudate. These results were not consistent among the experimental rats. These different results might be due to widespread damage resulting from internal carotid artery (ICA) occlusion in the intraluminal occlusion model. Accordingly, the authors suggest that this model be called an ICA occlusion model, rather than a pure MCA occlusion model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.