In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of outer membrane proteins. In Salmonella, EnvZ/OmpR also controls expression of another two-component system SsrA/B, which is located on Salmonella Pathogenicity Island (SPI) 2. SPI-2 encodes a type III secretion system, which functions as a nanomachine to inject bacterial effector proteins into eukaryotic cells. During the intracellular phase of infection, Salmonella switches from assembling type III secretion system structural components to secreting effectors into the macrophage cytoplasm, enabling Salmonella to replicate in the phagocytic vacuole. Major questions remain regarding how bacteria survive the acidified vacuole and how acidification affects bacterial secretion. We previously reported that EnvZ sensed cytoplasmic signals rather than extracellular ones, as intracellular osmolytes altered the dynamics of a 17-amino-acid region flanking the phosphorylated histidine. We reasoned that the Salmonella cytoplasm might acidify in the macrophage vacuole to activate OmpR-dependent transcription of SPI-2 genes. To address these questions, we employed a DNA-based FRET biosensor (“I-switch”) to measure bacterial cytoplasmic pH and immunofluorescence to monitor effector secretion during infection. Surprisingly, we observed a rapid drop in bacterial cytoplasmic pH upon phagocytosis that was not predicted by current models. Cytoplasmic acidification was completely dependent on the OmpR response regulator, but did not require known OmpR-regulated genes such as ompC, ompF, or ssaC (SPI-2). Microarray analysis highlighted the cadC/BA operon, and additional experiments confirmed that it was repressed by OmpR. Acidification was blocked in the ompR null background in a Cad-dependent manner. Acid-dependent activation of OmpR stimulated type III secretion; blocking acidification resulted in a neutralized cytoplasm that was defective for SPI-2 secretion. Based upon these findings, we propose that Salmonella infection involves an acid-dependent secretion process in which the translocon SseB moves away from the bacterial cell surface as it associates with the vacuolar membrane, driving the secretion of SPI-2 effectors such as SseJ. New steps in the SPI-2 secretion process are proposed.
Salmonella enterica serovar Typhimurium secretes virulence factors for invasion called Sip proteins or Sips into its hosts through a type III secretion system (T3SS). In the absence of a host, S. enterica induces Sip secretion in response to sucrose or simple salts, such as NaCl. We analyzed induction of host-independent Sip secretion by monitoring protein secretion by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), assembly of needle complexes by electron microscopy, and transcription of virulence regulatory genes by quantitative reverse transcriptase PCR (real-time PCR). SDS-PAGE showed that addition of sucrose or simple salts, such as NaCl, to the growth medium induced Sip secretion without altering flagellar protein secretion, which requires a distinct T3SS. Electron microscopy confirmed that the amount of secreted Sips increased as the number of assembled needle complexes increased. Real-time PCR revealed that added sucrose or NaCl enhanced transcription of hilA, hilC, and hilD, which encode known regulators of Salmonella virulence. However, epistasis analysis implicated HilD and HilA, but not HilC, in the direct pathway from the salt stimulus to the Sip secretion response. Further analyses showed that the BarA/SirA two-component signal transduction pathway, but not the two-component sensor kinase EnvZ, directly activated hilD and hilA transcription and thus Sip secretion in response to either sucrose or NaCl. Finally, real-time PCR showed that salt does not influence transcription of the BarA/SirA-dependent csrB and csrC genes. A model is proposed for the major pathway in which sucrose or salt signals to enhance virulence gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.