Gain-of-function mutations in the fibroblast growth factor receptor 3 gene (FGFR3) result in skeletal dysplasias, such as thanatophoric dysplasia and achondroplasia (ACH). The lack of disease models using human cells has hampered the identification of a clinically effective treatment for these diseases. Here we show that statin treatment can rescue patient-specific induced pluripotent stem cell (iPSC) models and a mouse model of FGFR3 skeletal dysplasia. We converted fibroblasts from thanatophoric dysplasia type I (TD1) and ACH patients into iPSCs. The chondrogenic differentiation of TD1 iPSCs and ACH iPSCs resulted in the formation of degraded cartilage. We found that statins could correct the degraded cartilage in both chondrogenically differentiated TD1 and ACH iPSCs. Treatment of ACH model mice with statin led to a significant recovery of bone growth. These results suggest that statins could represent a medical treatment for infants and children with TD1 and ACH.
Hypophosphatasia (HPP) is an inherited disorder caused by mutations in ALPL that encodes an isozyme of alkaline phosphatase (ALP), TNSALP. One of the most frequent ALPL mutations is c.1559delT, which causes the most severe HPP, the perinatal (lethal) form (pl-HPP). c.1559delT has been found only in Japanese and its prevalence is suspected to be high; however, the allele frequency of c.1559delT in Japanese remains unknown. We designed a screening system for the mutation based on high-resolution melting curve analysis, and examined the frequency of c.1559delT. We found that the c.1559delT carrier frequency is 1/480 (95% confidence interval, 1/1562-1/284). This indicates that B1 in 900 000 individuals to have pl-HPP caused by a homozygous c.1559delT mutation. In our analysis, the majority of c.1559delT carriers had normal values of HPP biochemical markers, such as serum ALP and urine phosphoethanolamine. Our results indicate that the only way to reliably detect whether individuals are pl-HPP carriers is to perform the ALPL mutation analysis.
The purpose of this noninvasive prenatal testing (NIPT) study was to compare the fetal fraction of singleton gestations by gestational age, maternal characteristics and chromosome-specific aneuploidies as indicated by z-scores. This study was a multicenter prospective cohort study. Test data were collected from women who underwent NIPT by the massively parallel sequencing method. We used sequencing-based fetal fraction calculations in which we estimated fetal DNA fraction by simply counting the number of reads aligned within specific autosomal regions and applying a weighting scheme derived from a multivariate model. Relationships between fetal fractions and gestational age, maternal weight and height, and z-scores for chromosomes 21, 18 and 13 were assessed. A total of 7740 pregnant women enrolled in the study, of which 6993 met the study criteria. As expected, fetal fraction was inversely correlated with maternal weight (P<0.001). The median fetal fraction of samples with euploid result (n=6850) and trisomy 21 (n=70) were 13.7% and 13.6%, respectively. In contrast, the median fetal fraction values for samples with trisomies 18 (n=35) and 13 (n=9) were 11.0% and 8.0%, respectively. The fetal fraction of samples with trisomy 21 NIPT result is comparable to that of samples with euploid result. However, the fetal fractions of samples with trisomies 13 and 18 are significantly lower compared with that of euploid result. We conclude that it may make detecting these two trisomies more challenging.
Aim The purpose of this study was to report the 3‐year experience of a nationwide demonstration project to introduce non‐invasive prenatal testing (NIPT) of maternal plasma for aneuploidy, and review the current status of NIPT in Japan. Methods Tests were conducted to detect aneuploidy in high‐risk pregnant women, and adequate genetic counseling was provided. The clinical data, test results, and pregnancy outcomes were recorded. We discuss the problems of NIPT on the basis of published reports and meta‐analyses. Results From April 2013 to March 2016, 30 613 tests were conducted at 55 medical sites participating in a multicenter clinical study. Among the 30 613 women tested, 554 were positive (1.81%) and 30 021 were negative (98.1%) for aneuploidy. Of the 289, 128, and 44 women who tested positive for trisomies 21, 18, and 13, respectively, and underwent definitive testing, 279 (96.5%), 106 (82.8%), and 28 (63.6%) were determined to have a true‐positive result. For the 13 481 women with negative result and whose progress could be traced, two had a false‐negative result (0.02%). The tests were performed on the condition that a standard level of genetic counseling be provided at hospitals. Conclusion Here, we report on the 3‐year nationwide experience with NIPT in Japan. It is important to establish a genetic counseling system to enable women to make informed decisions regarding prenatal testing. Moreover, a welfare system is warranted to support women who decide to give birth to and raise children with chromosomal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.