Grazing-incidence small-angle X-ray scattering (GISAXS) patterns have multiple superimposed contributions from the shape of the nanoscale structure, the coupling between the particles, the partial pair correlation, and the layer geometry. Therefore, it is not easy to identify the model manually from the huge amounts of combinations. The convolutional neural network (CNN), which is one of the artificial neural networks, can find regularities to classify patterns from large amounts of combinations. CNN was applied to classify GISAXS patterns, focusing on the shape of the nanoparticles. The network found regularities from the GISAXS patterns and showed a success rate of about 90% for the classification. This method can efficiently classify a large amount of experimental GISAXS patterns according to a set of model shapes and their combinations.
In this paper, alpha band modulation during visual spatial attention without visual stimuli was focused. Visual spatial attention has been expected to provide a new channel of non-invasive independent brain computer interface (BCI), but little work has been done on the new interfacing method. The flickering stimuli used in previous work cause a decline of independency and have difficulties in a practical use. Therefore we investigated whether visual spatial attention could be detected without such stimuli. Further, the common spatial patterns (CSP) were for the first time applied to the brain states during visual spatial attention. The performance evaluation was based on three brain states of left, right and center direction attention. The 30-channel scalp electroencephalographic (EEG) signals over occipital cortex were recorded for five subjects. Without CSP, the analyses made 66.44 (range 55.42 to 72.27) % of average classification performance in discriminating left and right attention classes. With CSP, the averaged classification accuracy was 75.39 (range 63.75 to 86.13) %. It is suggested that CSP is useful in the context of visual spatial attention, and the alpha band modulation during visual spatial attention without flickering stimuli has the possibility of a new channel for independent BCI as well as motor imagery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.