Environmental virus surveillance was conducted at two independent sewage plants from urban and rural areas in the northern prefecture of the Kyushu district, Japan, to trace polioviruses (PVs) within communities. Consequently, 83 PVs were isolated over a 34-month period from April 2010 to January 2013. The frequency of PV isolation at the urban plant was 1.5 times higher than that at the rural plant. Molecular sequence analysis of the viral VP1 gene identified all three serotypes among the PV isolates, with the most prevalent serotype being type 2 (46%). Nearly all poliovirus isolates exhibited more than one nucleotide mutation from the Sabin vaccine strains. During this study, inactivated poliovirus vaccine (IPV) was introduced for routine immunization on 1 September 2012, replacing the live oral poliovirus vaccine (OPV). Interestingly, the frequency of PV isolation from sewage waters declined before OPV cessation at both sites. Our study highlights the importance of environmental surveillance for the detection of the excretion of PVs from an OPV-immunized population in a highly sensitive manner, during the OPV-to-IPV transition period.
BackgroundRecent epidemiologic data suggest that the prevalence of macrolide resistant Mycoplasma pneumoniae (MR-M. pneumoniae) is increasing rapidly worldwide. This study assessed the present status of M. pneumoniae infection in Japan and clinical end-points to distinguish children with MR-M. pneumoniae.MethodsDuring an outbreak of M. pneumoniae infections in Fukuoka, Japan in 2010–11, a total of 105 children with clinically suspected M. pneumoniae infection were enrolled. M. pneumoniae was analyzed for macrolide resistance in domain V of the 23S rRNA gene. Sixty -five patients with PCR positive for M. pneumoniae were analyzed with regard to clinical symptoms, efficacy of several antimicrobial agents and several laboratory data.ResultsCausative pathogens were detected in 81.0% (85 of 105) and M. pneumoniae was identified 61.9% (65 of 105). The resistance rate of M. pneumoniae was 89.2% (58 of 65) in this general pediatric outpatient setting. Patients infected with MR-M. pneumoniae showed longer times to resolution of fever and required frequent changes of the initially prescribed macrolide to another antimicrobial agent. We observed three different genotypes of M. pneumoniae including the rarely reported A2063T mutation (A2063G: 31 strains, A2063T: 27 strains, no mutation: 7 strains). Drug susceptibility testing showed different antimicrobial susceptibility profiles for each genotype. Serum IFN-gamma, IL-6 and IP-10 levels were higher in patients with MR-genotypes than in those infected with no-mutation strains (p < 0.001).ConclusionsMacrolide resistance is more common than previously thought and a small epidemic of rarely reported A2063T mutation was observed in Fukuoka, Japan. Furthermore our results reveal the possibility that levels of certain inflammatory cytokines may be a candidate to predict MR-M.pneumoniae infection.
Human mastadenoviruses (HAdVs) are highly infectious viral pathogens that survive for prolonged periods in environmental waters. We monitored the presence of HAdVs in sewage waters between April 2014 and March 2015. A total of 27 adenoviral strains were detected in 75% (18/24 in occasion-base) of 24 wastewater collected samples. We identified the types of the strains as HAdV-C2 (n = 5), HAdV-A31 (5), HAdV-C1 (4), HAdV-B3 (4), HAdV-C5 (4), HAdV-B11 (2), P11H34F11 (2), and HAdV-D56 (1). The complete genome sequence of one P11H34F11 (strain T150125) was determined by next-generation sequencing and compared to other genome sequences of HAdV-B strains. The comparisons revealed evidence of a recombination event with breaking point in the hexon encoding region, which evidenced high similarity to HAdV-B34, while half of the rest of the genome showed similarity to HAdV-B11, including regions encoding fiber and E3 region proteins. The penton base encoding region seemed to be a recombinant product of HAdV-B14, -34; however, it was evidenced to be divergent to both as a novel type despite showing low bootstrap to support a new clade. We propose T150125 (P11H34F11) is a strain of a novel genotype, HAdV-79. These results support the usefulness of environmental surveillance approaches to monitor circulating HAdVs including novel types.
Seven foodborne norovirus outbreaks attributable to the GII.P17-GII.17 strain were reported across Japan in 2017, causing illness in a total of 2,094 persons. Nori (dried shredded seaweed) was implicated in all outbreaks and tested positive for norovirus. Our data highlight the stability of norovirus in dehydrated food products.
Coxsackievirus (CV)-A6 has been the primary causative agent of hand, foot, and mouth disease (HFMD) in Japan since 2011. In Fukuoka, CV-A6-associated HFMD caused epidemics in 2013, 2015, and 2017. This paper reports the genetic characteristics of the CV-A6 entire viral protein 1 (VP1) derived from patients with HFMD in Fukuoka between 2013 and 2017. CV-A6 was detected in 105 of 280 clinical specimens, and the entire VP1 sequences could be analyzed for 90 of the 105 specimens. Phylogenetic analysis revealed that the CV-A6 strains were classified into clade A and subgrouped into subclade A3 or subclade A4. Each subclade strain carried amino acid substitutions in the presumed DE and GH loops of the VP1, and no amino acid substitutions were identified as deleterious to the protein function. No significant difference was found in the clinical symptoms between the genetic subclades using statistical analyses. In conclusion, this study clarified the genetic diversity of CV-A6 in Fukuoka from 2013 to 2017. The emergence of the CV-A6 strains was classified into derived new subclades based on phylogenetic analysis of the VP1 gene that may cause CV-A6-associated HFMD epidemics approximately every 2 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.