Neural stem/progenitor cells (NSCs) proliferate vigorously as neurospheres in medium containing basic fibroblast growth factor (FGF-2), but start differentiating into neurons, astrocytes or oligodendrocytes in FGF-2-free medium. An extract of royal jelly (RJ) significantly increased the percentage in the total cell population of not only neurons immunoreactive for class III β-tubulin (Tuj1) but also astrocytes immunoreactive for glial fibrillary acidic protein (GFAP), and oligodendrocytes immunoreactive for 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) generated from NSCs, but decreased that of nestin-positive NSCs. These results highlight a novel and outstanding property of the RJ, i.e., that it facilitates the differentiation of all types of brain cells (neurons, astrocytes, and oligodendrocytes). On the other hand, 10-hydroxy-trans-2-decenoic acid (HDEA), an unsaturated fatty acid characteristic of RJ, increased the generation of neurons and decreased that of astrocytes from NSCs. These observations suggest that RJ contains plural components that differently influence neuronal and/or glial lineages and that HDEA is one of such components of RJ that facilitates neurogenesis by NSCs.
Activation of microglia/macrophages after injury occurs limitedly in the CNS, which finding may explain unsuccessful axonal regeneration. Therefore, the relationship between lipopolysaccharide (LPS)-induced inflammation and recovery of locomotor function of rats after spinal cord injury was examined. High-dose LPS improved locomotor function greater than low-dose LPS, being consistent with the expression of neurotrophic factor (GDNF) in microglia/macrophages. Experiments using GDNF gene mutant mice confirmed that the increase in the GDNF mRNA level, rather than the reduction in the mRNA level of inducible NO synthase, could be correlated with the restoration activity of locomotor function. These results suggest that a higher degree of inflammation leads to a higher degree of repair of CNS injuries through GDNF produced by activated microglia/macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.