Apoptotic cell phagocytosis has recently raised considerable interest, particularly due to its intricate molecular mechanisms and negative immunologic impact of incompetent clearance of apoptotic cells. There is a need for simple and reliable methods to clearly determine the internalization of apoptotic cells. Labeling with pHrodo succinimidyl ester (SE), a pH-sensitive fluorescent dye, makes engulfed apoptotic cells detectable due to the increased post-phagocytic light emission. This is a valuable tool for phagocytosis studies via FACS. We designed an ex vivo assay, using apoptotic pHrodo-labeled lymphocytes as prey and anti-CD11b-labeled tissue macrophages. To demonstrate its validity of detecting internalized apoptotic lymphocytes, we used MFGE8 -/-macrophages, known to have impaired phagocytic ability. Uptake of apoptotic lymphocytes was accelerated and enhanced in splenic macrophages after stimulation with recombinant MFGE8, while peritoneal macrophages were able to compensate for the delayed uptake. This novel assay is a quick and reliable method to evaluate the internalization of apoptotic cells.
Rationale: Milk fat globule epidermal growth factor 8 (MFG-E8) is a potent opsonin for the clearance of apoptotic cells and is produced by mononuclear cells of immune competent organs including the spleen and lungs. It attenuates chronic and acute inflammation such as autoimmune glomerulonephritis and bacterial sepsis by enhancing apoptotic cell clearance. Ischemia-reperfusion (I/R) injury of the gut results in severe inflammation, apoptosis, and remote organ damage, including acute lung injury (ALI). Objectives: To determine whether MFG-E8 attenuates intestinal and pulmonary inflammation after gut I/R. Methods: Wild-type (WT) and MFG-E8 2/2 mice underwent superior mesenteric artery occlusion for 90 minutes, followed by reperfusion for 4 hours. A group of WT mice was treated with 0.4 mg/20 g recombinant murine MFG-E8 (rmMFG-E8) at the beginning of reperfusion. Four hours after reperfusion, MFG-E8, cytokines, myeloperoxidase activity, apoptosis, and histopathology were assessed. A 24-hour survival study was conducted in rmMFG-E8-and vehicletreated WT mice. Measurements and Main Results: Mesenteric I/R caused severe widespread injury and inflammation of the small intestines and remote organs, including the lungs. MFG-E8 levels decreased in the spleen and lungs by 50 to 60%, suggesting impaired apoptotic cell clearance. Treatment with rmMFG-E8 significantly suppressed inflammation (TNF-a, IL-6, IL-1b, and myeloperoxidase) and injury of the lungs, liver, and kidneys. MFG-E8-deficient mice suffered from greatly increased inflammation and potentiated ALI, whereas treatment with rmMFG-E8 significantly improved the survival in WT mice. Conclusions: MFG-E8 attenuates inflammation and ALI after gut I/R and may represent a novel therapeutic agent.
Sepsis, a highly lethal systemic inflammatory syndrome, is associated with increases of proinflammatory cytokines (e.g., TNF-α, HMGB1) and the accumulation of apoptotic cells that have the potential to be detrimental. Depending on the timing and tissue, prevention of apoptosis in sepsis is beneficial; however, thwarting the development of secondary necrosis through the active removal of apoptotic cells by phagocytosis may offer a novel anti-sepsis therapy. Immature dendritic cells (IDCs) release exosomes that contain milk fat globule EGF factor VIII (MFGE8), a protein required to opsonize apoptotic cells for phagocytosis. In an experimental sepsis model using cecal ligation and puncture, we found that MFGE8 levels decreased in the spleen and blood, which was associated with impaired apoptotic cell clearance. Administration of IDC-derived exosomes promoted phagocytosis of apoptotic cells and significantly reduced mortality. Treatment with recombinant MFGE8 was equally protective, whereas MFGE8-deficient mice suffered from increased mortality. IDC exosomes also attenuated the release of proinflammatory cytokines in septic rats. Liberation of HMGB1, a nuclear protein that contributes to inflammation upon release from unengulfed apoptotic cells, was prevented by MFGE8-mediated phagocytosis in vitro. We conclude that IDC-derived exosomes attenuate the acute systemic inflammatory response in sepsis by enhancing apoptotic cell clearance via MFGE8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.