Homeostasis of blood glucose is maintained by hormone secretion from the pancreatic islets of Langerhans. Glucose stimulates insulin secretion from beta-cells but suppresses the release of glucagon, a hormone that raises blood glucose, from alpha-cells. The mechanism by which nutrients stimulate insulin secretion has been studied extensively: ATP has been identified as the main messenger and the ATP-sensitive potassium channel as an essential transducer in this process. By contrast, much less is known about the mechanisms by which nutrients modulate glucagon secretion. Here we use conventional pancreas perfusion and a transcriptional targeting strategy to analyse cell-type-specific signal transduction and the relationship between islet alpha- and beta-cells. We find that pyruvate, a glycolytic intermediate and principal substrate of mitochondria, stimulates glucagon secretion. Our analyses indicate that, although alpha-cells, like beta-cells, possess the inherent capacity to respond to nutrients, secretion from alpha-cells is normally suppressed by the simultaneous activation of beta-cells. Zinc released from beta-cells may be implicated in this suppression. Our results define the fundamental mechanisms of differential responses to identical stimuli between cells in a microorgan.
Wolfram syndrome is an autosomal-recessive disorder characterized by insulin-dependent diabetes mellitus, caused by nonautoimmune loss of β cells, and neurological dysfunctions. We have previously shown that mutations in the Wolfram syndrome 1 (WFS1) gene cause Wolfram syndrome and that WFS1 has a protective function against ER stress. However, it remained to be determined how WFS1 mitigates ER stress. Here we have shown in rodent and human cell lines that WFS1 negatively regulates a key transcription factor involved in ER stress signaling, activating transcription factor 6α (ATF6α), through the ubiquitin-proteasome pathway. WFS1 suppressed expression of ATF6α target genes and repressed ATF6α-mediated activation of the ER stress response element (ERSE) promoter. Moreover, WFS1 stabilized the E3 ubiquitin ligase HRD1, brought ATF6α to the proteasome, and enhanced its ubiquitination and proteasome-mediated degradation, leading to suppression of ER stress signaling. Consistent with these data, β cells from WFS1-deficient mice and lymphocytes from patients with Wolfram syndrome exhibited dysregulated ER stress signaling through upregulation of ATF6α and downregulation of HRD1. These results reveal a role for WFS1 in the negative regulation of ER stress signaling and in the pathogenesis of diseases involving chronic, unresolvable ER stress, such as pancreatic β cell death in diabetes.
Glucose-stimulated insulin secretion, glucose transport, glucose phosphorylation and glucose utilization have been characterized in the insulinoma cell line MIN6, which is derived from a transgenic mouse expressing the large T-antigen of SV40 in pancreatic beta cells. Glucose-stimulated insulin secretion occurred progressively from 5 mmol/l glucose, reached the maximal level approximately seven-fold above the basal level at 25 mmol/l, and remained at this level up to 50 mmol/l. Glucose transport was very rapid with the half-maximal uptake of 3-O-methyl-D-glucose being reached within 15 s at 22 degrees C. Glucose phosphorylating activity in the cell homogenate was due mainly to glucokinase; the Vmax value of glucokinase activity was estimated to be 255 +/- 37 nmol.h-1.mg protein-1, constituting approximately 80% of total phosphorylating activity, whereas hexokinase activity constituted less than 20%. MIN6 cells exhibited mainly the high Km component of glucose utilization with a Vmax of 289 +/- 18 nmol.h-1.mg protein-1. Thus, glucose utilization quantitatively and qualitatively reflected glucose phosphorylation in MIN6 cells. In contrast, MIN7 cells, which exhibited only a small increase in insulin secretion in response to glucose, had 4.7-fold greater hexokinase activity than MIN6 cells with a comparable activity of glucokinase. These characteristics of MIN6 cells are very similar to those of isolated islets, indicating that this cell line is an appropriate model for studying the mechanism of glucose-stimulated insulin secretion in pancreatic beta cells.
Wolfram syndrome, an autosomal recessive disorder characterized by juvenile-onset diabetes mellitus and optic atrophy, is caused by mutations in the WFS1 gene. In order to gain insight into the pathophysiology of this disease, we disrupted the wfs1 gene in mice. The mutant mice developed glucose intolerance or overt diabetes due to insufficient insulin secretion in vivo. Islets isolated from mutant mice exhibited a decrease in insulin secretion in response to glucose. The defective insulin secretion was accompanied by reduced cellular calcium responses to the secretagogue. Immunohistochemical analyses with morphometry and measurement of whole-pancreas insulin content demonstrated progressive beta-cell loss in mutant mice, while the alpha-cell, which barely expresses WFS1 protein, was preserved. Furthermore, isolated islets from mutant mice exhibited increased apoptosis, as assessed by DNA fragment formation, at high concentration of glucose or with exposure to endoplasmic reticulum-stress inducers. These results strongly suggest that WFS1 protein plays an important role in both stimulus-secretion coupling for insulin exocytosis and maintenance of beta-cell mass, deterioration of which leads to impaired glucose homeostasis. These WFS1 mutant mice provide a valuable tool for understanding better the pathophysiology of Wolfram syndrome as well as WFS1 function.
We tested the contribution of the small GTPase Rho and its downstream target p160ROCK during the early stages of axon formation in cultured cerebellar granule neurons. p160ROCK inhibition, presumably by reducing the stability of the cortical actin network, triggered immediate outgrowth of membrane ruffles and filopodia, followed by the generation of initial growth cone-ike membrane domains from which axonal processes arose. Furthermore, a potentiation in both the size and the motility of growth cones was evident, though the overall axon elongation rate remained stable. Conversely, overexpression of dominant active forms of Rho or ROCK was suggested to prevent initiation of axon outgrowth. Taken together, our data indicate a novel role for the Rho/ROCK pathway as a gate critical for the initiation of axon outgrowth and the control of growth cone dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.