The occupied and unoccupied in-gap electronic states
of a Rh-doped
SrTiO3 photocatalyst were investigated by X-ray emission
spectroscopy and X-ray absorption spectroscopy for different Rh impurity
valence states and doping levels. An unoccupied midgap Rh4+ acceptor state was found 1.5 eV below the SrTiO3 conduction
band minimum. Both Rh4+ and Rh3+ dopants were
found to have an occupied donor level close to the valence band maximum
of SrTiO3. The density of states obtained from first-principles
calculations show that all observed spectral features can be assigned
to electronic states of substitutional Rh at the Ti site and that
Rh:SrTiO3 is an unusual titanate compound with a characteristic
p-type electronic structure. The Rh doping results in a large decrease
of the bandgap energy, making Rh:SrTiO3 an attractive material
for use as a visible-light-driven H2-evolving photocatalyst
in a solar water splitting reaction.
High-resolution O 1s resonant inelastic x-ray scattering spectra of liquid H2O, D2O, and HDO, obtained by excitation near the preedge resonance show, in the elastic line region, well-separated multiple vibrational structures corresponding to the internal OH stretch vibration in the ground state of water. The energy of the first-order vibrational excitation is strongly blueshifted with respect to the main band in the infrared or Raman spectra of water, indicating that water molecules with a highly weakened or broken donating hydrogen bond are correlated with the preedge structure in the x-ray absorption spectrum. The vibrational profile of preedge excited HDO water is well fitted with 50%±20% greater OH-stretch contribution compared to OD, which strongly supports a preference for OH being the weakened or broken H-bond in agreement with the well-known picture that D2O makes stronger H-bonds than H2O. Accompanying path-integral molecular dynamics simulations show that this is particularly the case for strongly asymmetrically H-bonded molecules, i.e., those that are selected by preedge excitation.
We investigate the polaronic ground state of anatase TiO2 by bulk-sensitive resonant inelastic x-ray spectroscopy (RIXS) at the Ti L3 edge. We find that the formation of the polaron cloud involves a single 95 meV phonon along the c axis, in addition to the 108 meV ab-plane mode previously identified by photoemission. The coupling strength to both modes is the same within error bars, and it is unaffected by the carrier density. These data establish RIXS as a directional bulk-sensitive probe of electron-phonon coupling in solids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.