The failure of polycrystalline materials used in infrastructure and transportation can be catastrophic. Multiscale modeling, which requires multiscale measurements of internal stress fields, is the key to predicting the deformation and failure of alloys. We determined the three-dimensional intragranular stress tensor fields in plastically deformed bulk steel using a high-energy x-ray microbeam. We observed intragranular local stresses that deviated greatly from the grain-averaged stresses and exceeded the macroscopic tensile strength. Even under deformation smaller than the uniform elongation, the intragranular stress fields were in highly triaxial stress states, which cannot be determined from the grain-averaged stresses. The ability to determine intragranular stress tensor fields can facilitate the understanding and prediction of the deformation and failure of materials through multiscale modeling.
The crack closure behaviour of microstructurally small fatigue cracks was numerically simulated by combining the crack‐tip slip band model with the plasticity‐induced crack closure model. A Stage II crack started to propagate from an initiated Stage I crack. When the plastic zone was constrained by the grain boundary or the adjacent grain with higher yield stresses, the crack opening stress increased with crack extension, and the effective component of the stress range decreased. The crack‐tip opening displacement range (ΔCTOD), first decreased with crack extension due to the development of the residual stretch, then increased until the tip of the plastic zone reached the neighbouring grain boundary. When the plastic zone was blocked by the grain boundary, ΔCTOD began to decrease. The arrest condition of cracks was given by the threshold value of ΔCTOD. At the fatigue limit, the arrest of small cracks takes place just after the Stage II crack crosses the grain boundary when the grain boundary does not act as a barrier. Only when the grain boundary has a blocking strength and the yield stress of adjacent grains is not so high, the arrest of Stage II cracks takes place before the crack reaches the grain boundary. The fatigue limit decreases with the mean stress. The predicted relation between the fatigue limit and the mean stress is close to the modified Goodman relation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.