A layered compound composed of crystalline ruthenic acid sheets interleaved with layers of water can be exfoliated (delaminated) to yield colloidal nanosheets. This material is a mixed conductor where the crystalline nanosheets contribute to the electron conductivity and the hydrous interlayer supplies proton transport (see diagram). A large active surface area and a high specific capacitance is promising for electrochemical supercapacitor applications.
Electrochemical impedance spectroscopy was conducted on a series of hydrous ruthenium oxides, RuO(2).xH(2)O, (x = 0.5, 0.3, 0) and a layered ruthenic acid hydrate (H(0.2)RuO(2.1).nH(2)O) in order to evaluate their protonic and electronic conduction. The capacitor response frequency was observed at lower frequency for RuO(2).xH(2)O with higher water content, which was suggested to be due to electrolyte exhaustion within the film and/or utilization of hydrated interparticle micropores that have high ionic resistance. Analysis of the impedance data indicated that the charge-transfer resistance through the film is not significantly affected by the water content in RuO(2).xH(2)O, and the capacitor frequency response is dominated by the protonic conduction. The capacitor response frequency of layered H(0.2)RuO(2.1).nH(2)O was comparable to RuO(2).0.5H(2)O. The high specific capacitance at low frequency for layered H(0.2)RuO(2.1).nH(2)O is attributed to the utilization of the expandable hydrous interlayer, which accounts for the ionic conduction. The present results demonstrate the importance of hydrous regions (either interparticle or interlayer) to allow appreciable protonic conduction for high energy and high power electrochemical capacitors.
The ComX pheromone is an extracellular signaling molecule that stimulates natural competence in response to crowding in the gram-positive bacterium Bacillus subtilis. The pheromone is formed by isoprenylation of an inactive precursor peptide, but its precise structure is not known. Here we report the structure of the ComX pheromone, showing that addition of a geranyl group to a tryptophan residue results in the formation of an unusual ring structure.
Although cellular senescence acts primarily as a tumour suppression mechanism, the accumulation of senescent cells in vivo eventually exerts deleterious side effects through inflammatory/tumour-promoting factor secretion. Thus, the development of new drugs that cause the specific elimination of senescent cells, termed senolysis, is anticipated. Here, by an unbiased high-throughput screening of chemical compounds and a bio-functional analysis, we identify BET family protein degrader (BETd) as a promising senolytic drug. BETd provokes senolysis through two independent but integrated pathways; the attenuation of nonhomologous end joining (NHEJ), and the up-regulation of autophagic gene expression. BETd treatment eliminates senescent hepatic stellate cells in obese mouse livers, accompanied by the reduction of liver cancer development. Furthermore, the elimination of chemotherapyinduced senescent cells by BETd increases the efficacy of chemotherapy against xenograft tumours in immunocompromised mice. These results reveal the vulnerability of senescent cells and open up possibilities for its control.
Catalase from the facultatively psychrophilic bacterium Vibrio rumoiensis S-1 T , which was isolated from an environment exposed to H 2 O 2 and exhibited high catalase activity, was purified and characterized, and its localization in the cell was determined. Its molecular mass was 230 kDa, and the molecule consisted of four identical subunits. The enzyme, which was not apparently reduced by dithionite, showed a Soret peak at 406 nm in a resting state. The catalytic activity was 527,500 U ⅐ mg of protein ؊1 under standard reaction conditions at 40°C, 1.5 and 4.3 times faster, respectively, than those of the Micrococcus luteus and bovine catalases examined under the same reaction conditions, and showed a broad optimum pH range (pH 6 to 10). The catalase from strain S-1 T is located not only in the cytoplasmic space but also in the periplasmic space. There is little difference in the activation energy for the activity between strain S-1 T catalase and M. luteus and bovine liver catalases. The thermoinstability of the activity of the former catalase were significantly higher than those of the latter catalases. The thermoinstability suggests that the catalase from strain S-1 T should be categorized as a psychrophilic enzyme. Although the catalase from strain S-1 T is classified as a mammal type catalase, it exhibits the unique enzymatic properties of high intensity of enzymatic activity and thermoinstability. The results obtained suggest that these unique properties of the enzyme are in accordance with the environmental conditions under which the microorganism lives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.