Collybistin (Cb) is a brain-specific guanine nucleotide exchange factor that has been implicated in plasma membrane targeting of the postsynaptic scaffolding protein gephyrin found at glycinergic and GABAergic synapses. Here we show that Cb-deficient mice display a regionspecific loss of postsynaptic gephyrin and GABA A receptor clusters in the hippocampus and the basolateral amygdala. Cb deficiency is accompanied by significant changes in hippocampal synaptic plasticity, due to reduced dendritic GABAergic inhibition. Long-term potentiation is enhanced, and long-term depression reduced, in Cb-deficient hippocampal slices. Consistent with the anatomical and electrophysiological findings, the animals show increased levels of anxiety and impaired spatial learning. Together, our data indicate that Cb is essential for gephyrin-dependent clustering of a specific set of GABA A receptors, but not required for glycine receptor postsynaptic localization.
The cortical migration process depends on a number of trophic factors and on the activation of different voltage- and ligand-gated channels. We investigated the role of gamma-aminobutyric acid (GABA) type A receptors in the neuronal migration process of the newborn rat parietal cortex in vivo and in vitro. Local in vivo application of the GABA-A antagonist bicuculline methiodide (BMI) or the agonist muscimol via cortical surface Elvax implants induced prominent alterations in the cortical architecture when compared with untreated or sham-operated controls. BMI- and muscimol-treated animals revealed heterotopic cell clusters in the upper layers and a complete loss of the cortical lamination in the region underlying the Elvax implant. Immunocytochemical staining for glial fibrillary acidic protein, N-methyl-D-aspartate receptors, and GABA demonstrated that heterotopia was not provoked by glial proliferation and confirmed the presence of both glutamatergic and GABAergic neurons. In organotypic neocortical slices from embryonic day 18-19 embryos, application of BMI and to a lesser extent also muscimol induced an increase in the migration speed and an accumulation of neurons in the upper cortical layers. Spontaneous intracellular calcium ([Ca2+]i) oscillations in neocortical slices from newborn rats were abolished by BMI (5 and 20 microM) and muscimol (1 and 10 microM), indicating that both compounds interfere with [Ca2+]i signaling required for normal neuronal migration. Electrophysiological recordings from migrating neurons in newborn rat neocortical slices indicate that long-term application of muscimol causes a pronounced reduction (1 microM muscimol) or blockade (10 microM) in the responsiveness of postsynaptic GABA-A receptors due to a pronounced receptor desensitization. Our results indicate that modulation of GABA-A receptors by compounds acting as agonists or antagonists may profoundly influence the neuronal migration process in the developing cerebral cortex.
Presynaptic elements of axons, in which action potentials (APs) cause release of neurotransmitter, are sites of high densities and complex interactions of proteins. We report that the presence of K v 3 channels in addition to K v 1 at glutamatergic mossy fiber boutons (MFBs) in rat hippocampal slices considerably limits the number of fast, voltage-activated potassium channels necessary to achieve basal presynaptic AP repolarization. The ϳ10-fold higher repolarization efficacy per K v 3 channel compared with presynaptic K v 1 results from a higher steady-state availability at rest, a better recruitment by the presynaptic AP as a result of faster activation kinetics, and a larger single-channel conductance. Large-conductance calcium-and voltage-activated potassium channels (BK Ca ) at MFBs give rise to a fast activating/fast inactivating and a slowly activating/sustained K ϩ current component during long depolarizations. However, BK Ca contribute to MFB-AP repolarization only after presynaptic K v 3 have been disabled. The calcium chelators EGTA and BAPTA are equally effective in preventing BK Ca activation, suggesting that BK Ca are not organized in nanodomain complexes with presynaptic voltage-gated calcium channels. Thus, the functional properties of K v 3 channels at MFBs are tuned to both promote brevity of presynaptic APs limiting glutamate release and at the same time keep surface protein density of potassium channels low. Presynaptic BK Ca channels are restricted to limit additional increases of the AP half-duration in case of K v 3 hypofunction, because rapid membrane repolarization by K v 3 combined with distant calcium sources prevent BK Ca activation during basal APs.
Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease caused by the expansion of a polyglutamine tract in the Ca v 2.1 voltage-gated calcium channel. To elucidate how the expanded polyglutamine tract in this plasma membrane protein causes the disease, we created a unique knockin mouse model that modestly overexpressed the mutant transcripts under the control of an endogenous promoter (MPI-118Q). MPI-118Q mice faithfully recapitulated many features of SCA6, including selective Purkinje cell degeneration. Surprisingly, analysis of inclusion formation in the mutant Purkinje cells indicated the lysosomal localization of accumulated mutant Ca v 2.1 channels in the absence of autophagic response. The lack of cathepsin B, a major lysosomal cysteine proteinase, exacerbated the loss of Purkinje cells and was accompanied by an acceleration of inclusion formation in this model. Thus, the pathogenic mechanism of SCA6 involves the endolysosomal degradation pathway, and unique pathological features of this model further illustrate the pivotal role of protein context in the pathogenesis of polyglutamine diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.