The E3 ubiquitin ligase RNF20 regulates chromatin structure by monoubiquitinating histone H2B in transcription. Here, we show that RNF20 is localized to double-stranded DNA breaks (DSBs) independently of H2AX and is required for the DSB-induced H2B ubiquitination. In addition, RNF20 is required for the methylation of H3K4 at DSBs and the recruitment of the chromatin-remodeling factor SNF2h. Depletion of RNF20, depletion of SNF2h, or expression of the H2B mutant lacking the ubiquitination site (K120R) compromises resection of DNA ends and recruitment of RAD51 and BRCA1. Consequently, cells lacking RNF20 or SNF2h and cells expressing H2B K120R exhibit pronounced defects in homologous recombination repair (HRR) and enhanced sensitivity to radiation. Finally, the function of RNF20 in HRR can be partially bypassed by forced chromatin relaxation. Thus, the RNF20-mediated H2B ubiquitination at DSBs plays a critical role in HRR through chromatin remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.