Members of the nucleotide-binding domain and leucine-rich repeat containing (NLR) family and the pyrin and HIN-domain (PYHIN) family can form multiprotein complexes termed “inflammasomes”. The biochemical function of inflammasomes is to activate caspase-1, which leads to the maturation of interleukin 1β (IL-1β) and IL-18 and induction of pyroptosis, a form of cell death. Unlike other inflammasomes, the NLRP3 inflammasome can be activated by diverse stimuli. The importance of the NLRP3 inflammasome in immunity and human diseases has been well documented, but the mechanism and regulation of NLRP3 inflammasome activation remains unclear. In this review we summarize current understanding of the mechanism and regulation of NLRP3 inflammasome activation, as well as recent advances in the non-canonical and alternative inflammasome pathways.
The inflammasome adaptor ASC contributes to innate immunity through the activation of caspase-1. Here we show that Syk and JNK-dependent signaling pathways are required for caspase-1 activation via the ASC-dependent inflammasomes NLRP3 and AIM2. Inhibition of Syk or JNK abolished the formation of ASC specks without affecting interaction of ASC with NLRP3. ASC was phosphorylated during inflammasome activation in a Syk- and JNK-dependent manner, suggesting that Syk and JNK are upstream of ASC phosphorylation. Moreover, phosphorylation of Tyr144 residue in mouse ASC was critical for speck formation and caspase-1 activation. These results suggested that phosphorylation of ASC controls inflammasome activity through ASC speck formation.
Necroptosis is a physiological cell suicide mechanism initiated by receptor-interacting protein kinase-3 (RIPK3) phosphorylation of mixed-lineage kinase domain-like protein (MLKL), which results in disruption of the plasma membrane. Necroptotic cell lysis, and resultant release of proinflammatory mediators, is thought to cause inflammation in necroptotic disease models. However, we previously showed that MLKL signaling can also promote inflammation by activating the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome to recruit the adaptor protein apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) and trigger caspase-1 processing of the proinflammatory cytokine IL-1β. Here, we provide evidence that MLKL-induced activation of NLRP3 requires (i) the death effector four-helical bundle of MLKL, (ii) oligomerization and association of MLKL with cellular membranes, and (iii) a reduction in intracellular potassium concentration. Although genetic or pharmacological targeting of NLRP3 or caspase-1 prevented MLKLinduced IL-1β secretion, they did not prevent necroptotic cell death. Gasdermin D (GSDMD), the pore-forming caspase-1 substrate required for efficient NLRP3-triggered pyroptosis and IL-1β release, was not essential for MLKL-dependent death or IL-1β secretion. Imaging of MLKL-dependent ASC speck formation demonstrated that necroptotic stimuli activate NLRP3 cell-intrinsically, indicating that MLKL-induced NLRP3 inflammasome formation and IL-1β cleavage occur before cell lysis. Furthermore, we show that necroptotic activation of NLRP3, but not necroptotic cell death alone, is necessary for the activation of NF-κB in healthy bystander cells. Collectively, these results demonstrate the potential importance of NLRP3 inflammasome activity as a driving force for inflammation in MLKLdependent diseases.aspase-dependent apoptotic cell death is required for mammalian development and the prevention of autoimmune and neoplastic diseases. Programmed cell death can also act to eliminate pathogen-infected cells, with recent studies highlighting how targeted apoptosis-inducing anticancer compounds can treat viral and intracellular bacterial infections (1, 2). On the other hand, the recently characterized caspase-independent necroptotic cell death pathway is dispensable for organism development but, like apoptosis, can be triggered to kill cells harboring pathogenic microbes (3). A number of studies have also reported how pathological activation of necroptotic signaling may contribute to diverse disease states, such as ischemia-reperfusion injury, atherosclerosis, and liver disease, presumably through cell death and the release of proinflammatory mediators (4).The execution of necroptosis is dependent on receptor interacting serine-threonine protein kinase 3 (RIPK3) phosphorylation of mixed-lineage kinase domain-like protein (MLKL), and MLKL's association with, and disruption of, plasma membrane integrity (5).In the absence of caspase activit...
SUMMARY The activator and composition of the NLRP6 inflammasome remain poorly understood. We find that lipoteichoic acid (LTA), a molecule produced by Gram-positive bacteria, binds and activates NLRP6. In response to cytosolic LTA or infection with Listeria monocytogenes, NLRP6 recruited caspase-11 and caspase-1 via the adaptor ASC. NLRP6 activation by LTA induced processing of caspase-11, which promoted caspase-1 activation and IL-1β/IL-18 maturation in macrophages. Nlrp6−/− and Casp11−/− mice were less susceptible to Listeria monocytogenes infection, which was associated with reduced pathogen loads and impaired IL-18 production. Administration of IL-18 to Nlrp6−/− or Casp11−/− mice restored the susceptibility of mutant mice to Listeria monocytogenes infection. These results reveal a previously unrecognized innate immunity pathway triggered by cytosolic LTA that is sensed by NLRP6 and exacerbates systemic Gram-positive pathogen infection via the production of IL-18.
Streptococcus pneumoniae is a Gram-positive, extracellular bacterium that is responsible for significant mortality and morbidity worldwide. Pneumolysin (PLY), a cytolysin produced by all clinical isolates of the pneumococcus, is one of the most important virulence factors of this pathogen. We have previously reported that PLY is an essential factor for activation of caspase-1 and consequent secretion of IL-1β and IL-18 in macrophages infected with S. pneumoniae. However, the host molecular factors involved in caspase-1 activation are still unclear. To further elucidate the mechanism of caspase-1 activation in macrophages infected with S. pneumoniae, we examined the involvement of inflammasomes in inducing this cellular response. Our study revealed that apoptosis-associated speck like protein containing a caspase recruitment domain (ASC), an adaptor protein for inflammasome receptors such as NLR family, pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2), is essentially required for the induction of caspase-1 activation by S. pneumoniae. Caspase-1 activation was partially impaired in NLRP3−/− macrophages, while knockdown and knockout of AIM2 resulted in a clear decrease in caspase-1 activation in response to S. pneumoniae. These results suggest that ASC inflammasomes, including AIM2 and NLRP3, are critical for caspase-1 activation induced by S. pneumoniae. Furthermore, ASC−/− mice were more susceptible than wild-type mice to S. pneumoniae, with impaired secretion of IL-1β and IL-18 into the bronchoalveolar lavage after intranasal infection, suggesting that ASC inflammasomes contribute to the protection of host from infection with PLY-producing S. pneumoniae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.