Circulating fibrocytes had been reported to migrate into the injured lungs, and contribute to fibrogenesis via chemokine-chemokine receptor systems including CXCL12-CXCR4 axis. Here we hypothesized that blockade of CXCR4 might inhibit the migration of fibrocytes to the injured lungs and the subsequent pulmonary fibrosis. To explore the antifibrotic effects of blockade of CXCR4, we used a specific antagonist for CXCR4, AMD3100, in bleomycin-induced pulmonary fibrosis model in mice. Administration of AMD3100 significantly improved the loss of body weight of mice treated with bleomycin, and inhibited the fibrotic lesion in subpleural areas of the lungs. The quantitative analysis demonstrated that treatment with AMD3100 reduced the collagen content and fibrotic score (Aschcroft score) in the lungs. Although AMD3100 did not affect cell classification in bronchoalveolar lavage fluid on day 7, the percentage of lymphocytes was reduced by AMD3100 on day 14. AMD3100 directly inhibited the migration of human fibrocytes in response to CXCL12 in vitro, and reduced the trafficking of fibrocytes into the lungs treated with bleocmycin in vivo. These results suggest that the blockade of CXCR4 might be useful strategy for therapy of patients with pulmonary fibrosis via inhibiting the migration of circulating fibrocytes.
These results suggest that IMD-0354 might be useful to ameliorate the inflammation in the lungs induced by fibrotic injury and the subsequent fibrogenesis via inhibiting the expression of profibrotic cytokines related to the activation of NF-kappaB.
AGP is an important regulatory factor modulating the ability of imatinib to prevent pulmonary fibrosis in mice, and combined therapy with imatinib and EM or CAM might be useful for treatment of pulmonary fibrosis.
The soluble form of vascular endothelial growth factor receptor-1 (sVEGFR-1) is produced from endothelial cells by alternative splicing of VEGFR-1 mRNA, and can inhibit angiogenesis by blocking the biological effects of VEGF. In this study, we show the expression of a large amount of sVEGFR-1 in human monocyte-derived mature dendritic cells (mDCs). As compared with monocytes and immature DCs, mDCs generated by TNF-α or soluble CD40L with IFN-γ, but not LPS or other stimuli, preferentially produce sVEGFR-1. We also detected the mRNA of sVEGFR-1 generated by alternative splicing of VEGFR-1 mRNA in mDCs induced by TNF-α. The production of sVEGFR-1 showed a distinct contrast to those of VEGF in each DC matured with various stimuli. The supernatant of DCs matured with TNF-α or soluble CD40L with IFN-γ showed inhibition of the tube formation of HUVECs, which was neutralized by anti-VEGFR-1 Ab, indicating that sVEGFR-1 secreted from mDCs was biologically active. Interestingly, the supernatant of mDCs generated with LPS increased HUVEC capillary-like formation in vitro. The ratio of sVEGFR-1 to VEGF clearly reflected the net angiogenic property of mDCs. Administration of mDCs induced by TNF-α into the s.c. tumor of PC-14 cells implanted in SCID mice demonstrated the inhibition of tumor growth via reduction of the number of CD31-positive vessels, indicating their in vivo antiangiogenic potential. These results suggest that sVEGFR-1 produced by mDCs contribute to their antiangiogenic property, and the ratio of sVEGFR-1 to VEGF might be a useful tool for evaluating their ability to regulate angiogenesis mediated by VEGF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.