Dysregulated cytokine expression and signaling are major contributors to a number of autoimmune diseases. Interleukin-17A (IL-17A) and IL-6 are important in many disorders characterized by immune self-recognition, and IL-6 is known to induce the differentiation of T helper 17 (Th17) cells. Here we described an IL-17A-triggered positive-feedback loop of IL-6 signaling, which involved the activation of the transcription factors nuclear factor (NF)-kappaB and signal transducer and activator of transcription 3 (STAT3) in fibroblasts. Importantly, enhancement of this loop caused by disruption of suppressor of cytokine signaling 3 (SOCS3)-dependent negative regulation of the IL-6 signal transducer gp130 contributed to the development of arthritis. Because this mechanism also enhanced experimental autoimmune encephalomyelitis (EAE) in wild-type mice, it may be a general etiologic process underlying other Th17 cell-mediated autoimmune diseases.
IL-17-producing Th (Th17) comprise a distinct lineage of pro-inflammatory Th that are major contributors to autoimmune diseases. Treatment with IL-6 and transforming growth factor beta (TGFbeta) induces naive CD4+ T cells to generate Th17, which also requires expression of the IL-6/TGFbeta target RORgammat. We reported that IL-6 transduces two signaling pathways via tyrosine redidues of the signal transducer gp130: one depends on signal transducers and activators of transcription (STAT)-3 activation and the other on Src homology region 2 domain-containing phosphatase 2 (SHP2)/Grb2 associated binder (Gab)/mitogen-activated protein kinase (MAPK) activation. Here, we showed that CD4+ T cells carrying a mutant gp130 that transduces the SHP2/Gab/MAPK pathway but not the STAT3-mediated one failed to develop into Th17, while CD4+ T cells whose mutant gp130 transduces the STAT3 signal only generated Th17, indicating that IL-6 acts directly on T cells through the tyrosine residues of gp130 required for STAT3 activation to promote the development of Th17. Moreover, we found that gp130-STAT3 pathway is essential for Th17 development and for the expression of RORgammat by using T cells specifically lacking gp130 and STAT3. Noteworthy is that the regulatory T cell (Treg) percentages and numbers were comparable between all mutant mice we tested in vivo, although we showed that IL-6-gp130-STAT3 pathway suppressed Treg development in vitro. Thus, we conclude that IL-6 acts directly to promote the development of Th17 by activating the T cell gp130-STAT3 pathway but has a minimum effect on Treg development at least in the steady state in vivo. Therefore, blockade of IL-6-gp130-STAT3 pathway in CD4+ T cells could be a good target for controlling unwanted Th17-mediated immune responses including autoimmune diseases.
Systemic cytokine activity in response to Toll-like receptor (TLR) signaling induces the expression of various proteins in the liver after infections. Here we show that Interleukin-7 (IL-7), the production of which was thought to occur at a constant rate in vivo, was a hepatically expressed protein that directly controled T cell responses. Depletion of IL-7 expression in the liver abrogated several TLR-mediated T cell events, including enhanced CD4+ T cell and CD8+ T cell survival, augmented CD8+ T cell cytotoxic activity, and the development of experimental autoimmune encephalitis, a Th17 cell-mediated autoimmune disease. Thus, T cell responses are regulated by hepatocyte-derived IL-7, which is expressed in response to TLR signaling in vivo. We suggested that TLR-induced IL-7 expression in the liver, which is an acute-phase response, may be a good diagnostic and therapeutic target for efficient vaccine developments and for conditions characterized by TLR-mediated T cell dysregulation, including autoimmune diseases.
Tumor-associated inflammation can induce various molecules expressed from the tumors themselves or surrounding cells to create a microenvironment that potentially promotes cancer development. Inflammation, particularly chronic inflammation, is often linked to cancer development, even though its evolutionary role should impair nonself objects including tumors. The inflammation amplifier, a hyperinducer of chemokines in nonimmune cells, is the principal machinery for inflammation and is activated by the simultaneous stimulation of NF-kB and STAT3. We have redefined inflammation as local activation of the inflammation amplifier, which causes an accumulation of various immune cells followed by dysregulation of local homeostasis. Genes related to the inflammation amplifier have been genetically associated with various human inflammatory diseases. Here, we describe how cancer-associated genes, including interleukin (IL)-6, Ptgs2, ErbB1, Gas1, Serpine1, cMyc, and Vegfa, are strongly enriched in genes related to the amplifier. The inflammation amplifier is activated by the stimulation of cytokines, such as TNF-a, IL-17, and IL-6, resulting in the subsequent expression of various target genes for chemokines and tumor-related genes like BCL2L11, CPNE7, FAS, HIF1-a, IL-1RAP, and SOD2. Thus, we conclude that inflammation does indeed associate with the development of cancer. The identified genes associated with the inflammation amplifier may thus make potential therapeutic targets of cancers. Cancer Res; 74(1);
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.