Rapid eye movement sleep behavior disorder (RBD) is a parasomnia with clinical symptoms that include punching, kicking, yelling and leaping out of bed in sleep. Polysomnographic (PSG) finding showed REM sleep without muscle atonia. Clonazepam is generally used for treating RBD symptoms but melatonin was reported to be effective so we reconfirmed the effect of melatonin on RBD patients in the present study. We used melatonin (3-9 mg/day) which could ameliorate problem sleep behaviors remarkably, as well as %tonic activity in PSG variables. In the present study, melatonin was reconfirmed to be effective in RBD symptoms, especially for patients with low melatonin secretion, while its mechanism was not clearly known in the present study.
We developed a radiographic technique to image a subsurface conduit shape using cosmic‐ray muons. The test measurement was performed in Showa‐Shinzan lava dome located in Hokkaido, Japan as an example. A muon detector with an area of 6000 cm2 was set up at the foot of the lava dome. Muon tracks recorded in nuclear emulsion films in the detector were analyzed to determine the level of energy absorption along different ray paths through subsurface beneath the lava dome. A typical angular resolution of the muon detector of 10 mrad corresponds to a spatial resolution of 10 m at a distance of 1 km, which is difficult to be addressed with seismological technique. We mapped differentially absorbed cosmic‐ray muons, which depend upon the varying thickness and density beneath the dome. We successfully imaged the conduit shape and determined a conduit diameter of 102 ± 15 m, assuming the observed high absorption region beneath the dome is localized in the vent area.
Enhanced activation of cardioprotective signaling pathways by inhibiting myocardial SOCS3 expression prevented LV remodeling after AMI. Our data suggest that myocardial SOCS3 may be a key molecule in the development of LV remodeling after AMI.
Background: Remote ischemic preconditioning (RIPC) induced by transient limb ischemia is a powerful innate mechanism of cardioprotection against ischemia. Several described mechanisms explain how RIPC may act through neural pathways or humoral factors; however, the mechanistic pathway linking the remote organ to the heart has not yet been fully elucidated. This study aimed to investigate the mechanisms underlying the RIPC-induced production of Janus kinase (JAK)-signal transducer and activator of the transcription (STAT)-activating cytokines and cardioprotection by using mouse and human models of RIPC.
Methods and Results:Screened circulating cardioprotective JAK-STAT-activating cytokines in mice unexpectedly revealed increased serum erythropoietin (EPO) levels after RIP induced by transient ischemia. In mice, RIPC rapidly upregulated EPO mRNA and its main transcriptional factor, hypoxia-inducible factor-1α (HIF1α), in the kidney. Laser Doppler blood flowmetry revealed a prompt reduction of renal blood flow (RBF) after RIPC. RIPC activated cardioprotective signaling pathways and the anti-apoptotic Bcl-xL pathway in the heart, and reduced infarct size. In mice, these effects were abolished by administration of an EPO-neutralizing antibody. Renal nerve denervation also abolished RIPC-induced RBF reduction, EPO production, and cardioprotection. In humans, transient limb ischemia of the upper arm reduced RBF and increased serum EPO levels.
Conclusions:Based on the present data, we propose a novel RIPC mechanism in which inhibition of infarct size by RIPC is produced through the renal nerve-mediated reduction of RBF associated with activation of the HIF1α-EPO pathway.
1558OBA T et al.
Hypoxia Inducible Factor-1α (HIF1α) Immunohistochemical StainingMouse kidneys were harvested 1 h after RIPC. Embedded sections were deparaffinized, and endogenous peroxidase activity was inhibited by treating the sections with 0.3% H2O2 in PBS for 10 min. After several washes with PBS, the sections were incubated for 20 min with blocking solution (Jackson ImmunoResearch) to block non-specific binding, followed by overnight incubation at 4°C with the purified anti-hypoxia inducible factor-1α (HIF1α) antibody (Abcam). Subsequently, the sections were incubated with an alkaline phosphatase-conjugated goat anti-rabbit IgG antibody for 30 min. Signal amplification was achieved by incubating the slides for 30 min with Vectastain Elite Avidin-Biotin Complex solution (Vectastain ABC Kit, Vector), followed by incubation with Vectastain diaminobenzidine solution as the chromagen marker (Dako). 28 For a negative staining control, goat serum was used in place of the HIF1α antibody.
Renal Blood Flow (RBF) MonitoringMouse RBF was measured at 0 min and every 2 min during and after RIPC induction, using a laser Doppler blood flow imager (Laser Doppler Perfusion Imager System, moorLDI TMMark 2, Moor Instruments). Before RBF scanning in the right kidney, mice were placed on a heating pad at 37°C to minimize temperature variations. In control mice, a sham...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.