We have designed and developed a small field of view gamma camera, the eZ SCOPE, based on use of a CdZnTe semiconductor. This device utilises proprietary signal processing technology and an interface to a computer-based imaging system. The purpose of this study was to evaluate the performance of the eZ scope in comparison with currently employed gamma camera technology. The detector is a single wafer of 5-mm-thick CdZnTe that is divided into a 16x16 array (256 pixels). The sensitive area of the detector is a square of dimension 3.2 cm. Two parallel-hole collimators are provided with the system and have a matching (256 hole) pattern to the CdZnTe detector array: a low-energy, high-resolution parallel-hole (LEHR) collimator fabricated of lead and a low-energy, high-sensitivity parallel-hole (LEHS) collimator fabricated of tungsten. Performance measurements and the data analysis were done according to the procedures of the NEMA standard. We also studied the long-term stability of the system with continuous use and variations in ambient temperature. Results were as follows. INTRINSIC ENERGY RESOLUTION: 8.6% FWHM at 141 keV.LINEARITY: There was excellent linearity between the observed photopeaks and the known gamma ray energies for the given isotopes. INTRINSIC SYSTEM UNIFORMITY: For the central field of view, the integral uniformity and the differential uniformity were, respectively, 1.6% and 1.3% with the LEHR collimator and 1.9% and 1.2% with the LEHS collimator. SYSTEM SPATIAL RESOLUTION: The FWHM measurements made at the surface of the collimator were 2.2 mm (LEHR) and 2.9 mm (LEHS).CONTRAST TEST: The average S/N ratios (i.e. counts in the irradiated pixel divided by counts in the surrounding pixels) for the inner ring pixels (8)/outer ring pixels (16) using the LEHS collimator and LEHR collimator were 3.2%/0.2% and 3.7%/0.3%, respectively. COUNT RATE CHARACTERISTICS: We could not determine the maximum count rate and the 20% loss count rate from these data because the plateau was not reached while using the solutions measured. SYSTEM SENSITIVITY: The average acquisitions were 11,052 cpm/MBq (LEHR) and 28,590 cpm/MBq (LEHS). TEMPERATURE DEPENDENCE: The system displayed minimum corresponding shift in cps with temperature changes in the measured temperature range. We designed and developed a semiconductor-based gamma camera using CdZnTe. The basic performance of this camera compares favourably with the existing gamma camera technology that is deployed in the medical field today. The most significant differences include the spatial resolution, sensitivity, high count rate characteristics and energy resolution. We believe that this device will be of value for a number of clinical applications including sentinel node detection and radiopharmaceutical-guided surgery.
An instrument performance test has been carried out for a radon measuring system made in Hungary. The system measures radon using the alpha-track detection technique. It consists of three parts: the passive detector, the etching unit and the evaluation unit. A CR-39 detector is used as the radiation detector. Alpha-track reading and data analysis are carried out after chemical etching. The following subjects were examined in the present study: (1) radon sensitivity, (2) performance of etching and evaluation processes and (3) thoron sensitivity. The radon sensitivity of 6.9 x 10(-4) mm(-2) (Bq m(-3) d)(-1) was acceptable for practical application. The thoron sensitivity was estimated to be as low as 3.3 x 10(-5) mm(-2) (Bq m(-3) d)(-1) from the experimental study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.