Osteocytes are derived from osteoblasts, but reside in the mineralized bone matrix under hypoxic conditions. Osteocyte-like cells show higher expression of ORP150, which is induced by hypoxia, than osteoblast-like cells. Accordingly, we hypothesized that the oxygen tension may regulate the transformation of osteoblasts to osteocytes. MC3T3-E1 cells and calvariae from 4-day-old mice were cultured under normoxic (20% O(2)) or hypoxic (5% O(2)) conditions. To investigate osteoblastic differentiation and tranformation to osteocytes, alizarin red staining was done and the expression of various factors was assessed. Hypoxic culture promoted the increased synthesis of mineralized matrix by MC3T3-E1 cells. Alkaline phosphatase activity was initially increased during hypoxic culture, but decreased during osteogenesis. Osteocalcin production was also increased by hypoxic culture, but decreased after mineralization. Furthermore, expression of Dmp1, Mepe, Fgf23, and Cx43, which are osteocyte-specific or osteocyte-predominant proteins, by MC3T3-E1 cells was greater under hypoxic than under normoxic conditions. In mouse calvarial cultures, the number of cells in the bone matrix and cells expressing Dmp1 and Mepe were increased by hypoxia. In MC3T3-E1 cell cultures, ORP150 expression was only detected in the mineralized nodules under normoxic conditions, while its expression was diffuse under hypoxic conditions, suggesting that the nodules were hypoxic zones even in normoxic cultures. These findings suggest that a low oxygen tension promotes osteoblastic differentiation and subsequent transformation to osteocytes.
ObjectiveSemaphorin 4D (Sema4D)/CD100 has pleiotropic roles in immune activation, angiogenesis, bone metabolism, and neural development. We undertook this study to investigate the role of Sema4D in rheumatoid arthritis (RA).MethodsSoluble Sema4D (sSema4D) levels in serum and synovial fluid were analyzed by enzyme‐linked immunosorbent assay. Cell surface expression and transcripts of Sema4D were analyzed in peripheral blood cells from RA patients, and immunohistochemical staining of Sema4D was performed in RA synovium. Generation of sSema4D was evaluated in an ADAMTS‐4–treated monocytic cell line (THP‐1 cells). The efficacy of anti‐Sema4D antibody was evaluated in mice with collagen‐induced arthritis (CIA).ResultsLevels of sSema4D were elevated in both serum and synovial fluid from RA patients, and disease activity markers were correlated with serum sSema4D levels. Sema4D‐expressing cells also accumulated in RA synovium. Cell surface levels of Sema4D on CD3+ and CD14+ cells from RA patients were reduced, although levels of Sema4D transcripts were unchanged. In addition, ADAMTS‐4 cleaved cell surface Sema4D to generate sSema4D in THP‐1 cells. Soluble Sema4D induced tumor necrosis factor α (TNFα) and interleukin‐6 (IL‐6) production from CD14+ monocytes. IL‐6 and TNFα induced ADAMTS‐4 expression in synovial cells. Treatment with an anti‐Sema4D antibody suppressed arthritis and reduced proinflammatory cytokine production in CIA.ConclusionA positive feedback loop involving sSema4D/IL‐6 and TNFα/ADAMTS‐4 may contribute to the pathogenesis of RA. The inhibition of arthritis by anti‐Sema4D antibody suggests that Sema4D represents a potential therapeutic target for RA.
Prostaglandin E(2) (PGE(2)) enhances osteoclast formation in mouse macrophage cultures treated with receptor activator of nuclear factor-kappaB ligand (RANKL). The effects of PGE(2) on human osteoclast formation were examined in cultures of CD14(+) cells prepared from human peripheral blood mononuclear cells. CD14(+) cells differentiated into osteoclasts in the presence of RANKL and macrophage colony-stimulating factor. CD14(+) cells expressed EP2 and EP4, but not EP1 or EP3, whereas CD14(+) cell-derived osteoclasts expressed none of the PGE(2) receptors. PGE(2) and PGE(1) alcohol (an EP2/4 agonist) stimulated cAMP production in CD14(+) cells. In contrast to mouse macrophage cultures, PGE(2) and PGE(1) alcohol inhibited RANKL-induced human osteoclast formation in CD14(+) cell cultures. H-89 blocked the inhibitory effect of PGE(2) on human osteoclast formation. These results suggest that the inhibitory effect of PGE(2) on human osteoclast formation is mediated by EP2/EP4 signals. SaOS4/3 cells have been shown to support human osteoclast formation in cocultures with human peripheral blood mononuclear cells in response to PTH. PGE(2) inhibited PTH-induced osteoclast formation in cocultures of SaOS4/3 cells and CD14(+) cells. Conversely, NS398 (a cyclooxygenase 2 inhibitor) enhanced osteoclast formation induced by PTH in the cocultures. The conditioned medium of CD14(+) cells pretreated with PGE(2) inhibited RANKL-induced osteoclast formation not only in human CD14(+) cell cultures, but also in mouse macrophage cultures. These results suggest that PGE(2) inhibits human osteoclast formation through the production of an inhibitory factor(s) for osteoclastogenesis of osteoclast precursors.
Macrophage colony-stimulating factor (M-CSF) is a key factor for osteoclastogenesis at the bone-pannus interface in patients with rheumatoid arthritis as well as a receptor activator of NF-kappaB ligand (RANKL). Imatinib mesylate inhibits the phosphorylation of c-fms, a receptor for M-CSF. The present study investigates the effect of imatinib mesylate on joint destruction in rats with collagen-induced arthritis (CIA) and on osteoclastogenesis in vitro. Imatinib mesylate (50 or 150 mg/kg), dexamethasone, or vehicle was administered daily to CIA rats for 4 weeks from the onset of arthritis. Hind-paw swelling and body weight were measured weekly. At weeks 2 and 4, the metatarsophalangeal (MTP) joints and the ankle and subtalar joints were radiographically and histologically assessed. The effect of imatinib mesylate on osteoclast formation from rat bone marrow cells with M-CSF and soluble RANKL (sRANKL) in vitro was also examined. Radiographic assessment showed that 150 mg/kg imatinib mesylate suppressed the destruction of the MTP and the ankle and subtalar joints at week 2, and MTP joint destruction at week 4 in CIA rats, although hind-paw swelling was not suppressed. The number of TRAP-positive cells at the bone-pannus interface was significantly reduced in the group administered with 150 mg/kg imatinib mesylate compared with that given vehicle at week 4. Imatinib mesylate dose-dependently inhibited the proliferation of M-CSF-dependent osteoclast precursor cells in vitro as well as osteoclast formation induced by M-CSF and sRANKL. These findings suggest that imatinib mesylate could prevent joint destruction in patients with rheumatoid arthritis.
Objective: To examine the role of tartrate resistant acid phosphatase (TRAP) positive mononuclear and multinucleated cells in the destruction of articular cartilage in patients with rheumatoid arthritis (RA). Methods: The presence of TRAP positive cells in the synovial tissue of patients with RA was examined by enzyme histochemistry and immunohistochemistry. Expression of mRNAs for matrix metalloproteinases (MMPs) was assessed by the reverse transcriptase-polymerase chain reaction (RT-PCR) and northern blot analysis. Production of MMPs by mononuclear and multinucleated TRAP positive cells was examined by immunocytochemistry, enzyme linked immunosorbent assay (ELISA) of conditioned medium, and immunohistochemistry of human RA synovial tissue. In addition, a cartilage degradation assay was performed by incubation of 35 S prelabelled cartilage discs with TRAP positive cells. Results: TRAP positive mononuclear cells and multinucleated cells were found in proliferating synovial tissue adjacent to the bone-cartilage interface in patients with RA. Expression of MMP-2 (gelatinase A), MMP-9 (gelatinase B), MMP-12 (macrophage metalloelastase), and MMP-14 (MT1-MMP) mRNA was detected in TRAP positive mononuclear and multinucleated cells by both RT-PCR and northern blot analysis. Immunocytochemistry for these MMPs showed that MMP-2 and MMP-9 were produced by both TRAP positive mononuclear and multinucleated cells, whereas MMP-12 and MMP-14 were produced by TRAP positive multinucleated cells. MMP-2 and MMP-9 were detected in the conditioned medium of TRAP positive mononuclear cells. TRAP positive mononuclear cells also induced the release of 35 S from prelabelled cartilage discs. Conclusion: This study suggests that TRAP positive mononuclear and multinucleated cells located in the synovium at the cartilage-synovial interface produce MMP-2 and MMP-9, and may have an important role in articular cartilage destruction in patients with RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.