The capsaicin receptor transient receptor potential V1 (TRPV1; also known as vanilloid receptor 1) is a sensory neuron-specific ion channel that serves as a polymodal detector of pain-producing chemical and physical stimuli. It has been reported that extracellular ATP potentiates the TRPV1 currents evoked by capsaicin or protons and reduces the temperature threshold for its activation through metabotropic P2Y receptors in a PKC-dependent pathway, suggesting that TRPV1 activation could trigger the sensation of pain at normal body temperature in the presence of ATP. Here, we show that ATP-induced thermal hyperalgesia was abolished in mice lacking TRPV1, suggesting the functional interaction between ATP and TRPV1 at a behavioral level. However, thermal hyperalgesia was preserved in P2Y1 receptor-deficient mice. Patch-clamp analyses using mouse dorsal root ganglion neurons indicated the involvement of P2Y2 rather than P2Y1 receptors. Coexpression of TRPV1 mRNA with P2Y2 mRNA, but not P2Y1 mRNA, was determined in the rat lumbar DRG using in situ hybridization histochemistry. These data indicate the importance of metabotropic P2Y2 receptors in nociception through TRPV1.
Foxp3 regulatory T (Treg) cells, which suppress immune responses, are highly proliferative in vivo. However, it remains unclear how the active replication of Treg cells is maintained in vivo. Here, we show that branched-chain amino acids (BCAAs), including isoleucine, are required for maintenance of the proliferative state of Treg cells via the amino acid transporter Slc3a2-dependent metabolic reprogramming. Mice fed BCAA-reduced diets showed decreased numbers of Foxp3 Treg cells with defective in vivo proliferative capacity. Mice lacking Slc3a2 specifically in Foxp3 Treg cells showed impaired in vivo replication and decreased numbers of Treg cells. Slc3a2-deficient Treg cells showed impaired isoleucine-induced activation of the mTORC1 pathway and an altered metabolic state. Slc3a2 mutant mice did not show an isoleucine-induced increase of Treg cells in vivo and exhibited multi-organ inflammation. Taken together, these findings demonstrate that BCAA controls Treg cell maintenance via Slc3a2-dependent metabolic regulation.
Human rhabdomyosarcomas (RMSs) frequently demonstrate genetic alterations in ras and p53. To investigate their possible involvement in the tumorigenesis, we generated a knock-in mouse line with oncogenic K-ras, conditionally expressed by Cre/LoxP system on a background of p53 alteration. Electroporation of Cre expression vector in skeletal muscle tissues resulted in the generation of tumor in adults with tumor incidences of 100% at 10 weeks and 40% at 15 weeks, in p53 À/À and p53 À/ þ backgrounds, respectively. The tumor histology was pleomorphic RMS with characteristic bizarre giant cells, positive for desmin and a-sarcomeric actin and exhibiting remarkable increase in total and phosphorylated extracellular signal-regulated protein kinase (ERK)1 and ERK2. Loss of the wild-type p53 was detected in K-rasG12V-expressed tumors of p53 À/ þ mice. Early lesions 3 weeks after electroporation consisted of proliferating populations of myogenic progenitors, including stem cells positive for ScaI antigen, immature cells positive for desmin and neural cell adhesion molecule-positive myotubes. Thus, cooperation of oncogenic K-ras and p53 deficiency resulted in the development of pleomorphic RMS in adult mice, providing a useful mouse model for further detailed studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.