We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. The technique we employ, which exploits microscale fiberoptic pressure sensors, enables the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. In our results, the sound pressure in scala vestibuli (P SV ) was much greater than scala tympani pressure (P ST ), except for very low and high frequencies where P ST significantly affected the input to the cochlea. The differential pressure (P SV − P ST ) is a superior measure of ossicular transduction of sound compared to P SV alone: (P SV −P ST ) was reduced by 30 to 50 dB when the ossicular chain was disarticulated, whereas P SV was not reduced as much. The middle ear gain P SV /P EC and the differential pressure normalized to ear canal pressure (P SV − P ST )/P EC were generally bandpass in frequency dependence. At frequencies above 1 kHz, the group delay in the middle ear gain is about 83 μs, over twice that of the gerbil. Concurrent measurements of stapes velocity produced estimates of cochlear input impedance, the differential impedance across the partition, and round window impedance. The differential impedance was generally resistive, while the round window impedance was consistent with compliance in conjunction with distributed inertia and damping. Our technique of measuring differential pressure can be used to study inner ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round window stimulation and bone conduction)-situations that cannot be completely quantified by measurements of stapes velocity or scala vestibuli pressure by themselves.
The results suggest that superior semicircular canal dehiscence can affect hearing function by introducing a third window into the inner ear.
Objective This study compares measurements of ear-canal reflectance (ECR) to other objective measurements of middle-ear function including, audiometry, umbo velocity (VU), and tympanometry in a population of strictly defined normal hearing ears. Design Data were prospectively gathered from 58 ears of 29 normal hearing subjects, 16 female and 13 male, aged 22–64 years. Subjects met all of the following criteria to be considered as having normal hearing. (1) No history of significant middle-ear disease. (2) No history of otologic surgery. (3) Normal tympanic membrane (TM) on otoscopy. (4) Pure-tone audiometric thresholds of 20 dB HL or better for 0.25 – 8 kHz. (5) Air-bone gaps no greater than 15 dB at 0.25 kHz and 10 dB for 0.5 – 4 kHz. (6) Normal, type-A peaked tympanograms. (7) All subjects had two “normal” ears (as defined by these criteria). Measurements included pure-tone audiometry for 0.25 – 8 kHz, standard 226 Hz tympanometry, Ear canal reflectance(ECR) for 0.2 – 6 kHz at 60 dB SPL using the Mimosa Acoustics HearID system, and Umbo Velocity (VU ) for 0.3 – 6 kHz at 70–90 dB SPL using the HLV-1000 laser Doppler vibrometer (Polytec Inc). Results Mean power reflectance (|ECR|2) was near 1.0 at 0.2– 0.3 kHz, decreased to a broad minimum of 0.3 to 0.4 between 1 and 4 kHz, and then sharply increased to almost 0.8 by 6 kHz. The mean pressure reflectance phase angle (∠ECR) plotted on a linear frequency scale showed a group delay of approximately 0.1 ms for 0.2 – 6 kHz. Small significant differences were observed in |ECR|2 at the lowest frequencies between right and left ears, and between males and females at 4 kHz. |ECR|2 decreased with age, but reached significance only at 1 kHz. Our ECR measurements were generally similar to previous published reports. Highly significant negative correlations were found between |ECR|2 and VU for frequencies below 1 kHz. Significant correlations were also found between the tympanometrically determined peak total compliance and |ECR|2 and The results suggest that middle-ear compliance VU at frequencies below 1 kHz. contributes significantly to the measured power reflectance and umbo velocity at frequencies below 1 kHz, but not at higher frequencies. Conclusions This study has established a database of objective measurements of middle ear function (ear-canal reflectance, umbo velocity, tympanometry) in a population of strictly defined normal hearing ears. The data will promote our understanding of normal middle ear function, and will serve as a control for comparison to similar measurements made in pathological ears.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.