The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes encode ~12,500 predicted proteins, a high proportion of which have long repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal rDNA element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal/fungal lineage after the plant/animal split, but Dictyostelium appears to have retained more of the diversity of the ancestral genome than either of these two groups.The amoebozoa are a richly diverse group of organisms whose genomes remain largely unexplored. The soil-dwelling social amoeba Dictyostelium discoideum has been actively studied for the past fifty years and has contributed greatly to our understanding of cellular motility, signalling and interaction 1 . For example, studies in Dictyostelium provided the first descriptions of a eukaryotic cell chemo-attractant and a cell-cell adhesion protein 2, 3 .Dictyostelium amoebae inhabit forest soil consuming bacteria and yeast, which they track by chemotaxis. Starvation, however, prompts the solitary cells to aggregate and to develop as a true multicellular organism, producing a fruiting body comprised of a cellular, cellulosic stalk supporting a bolus of spores. Thus, Dictyostelium has evolved mechanisms that direct the differentiation of a homogeneous population of cells into distinct cell types, regulate the proportions between tissues and orchestrate the construction of an effective structure for the dispersal of spores 4 . Many of the genes necessary for these processes in Dictyostelium were Eichinger et al. Page 2 Nature. Author manuscript; available in PMC 2006 January 27. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript also inherited by metazoa and fashioned through evolution for use within many different modes of development.The amoebozoa are also noteworthy as representing one of the earliest branches from the last common ancestor of all eukaryotes. Each of the surviving branches of the crown group of eukaryotes provides an example of the ways in which the ancestral genome has been sculpted and adapted by lineage-specific gene duplication, divergence and deletion. Comparison between representatives of these branches promises to shed light not only on the nature and content of the ancestral eukaryotic genome, but on the diversity of ways in which its components have been adapted to meet the needs of complex organisms. The genome of Dictyosteliu...
We introduce a PCR-based procedure for generating a gene disruption construct. This method depends on DNA fragment fusion by the PCR technique and requires only two steps of PCR to obtain a sufficient amount of the gene disruption construct for one transformation experiment. The first step involves three separate PCR syntheses of a selectable marker cassette and the 5'- and 3'-regions of a target gene. Of the four primers used in amplification of the 5'- and 3'-regions of the target gene, two primers placed proximal to the site of the marker cassette are designed to have sequence tags complementary to the 5'- or 3'-side of the marker cassette. The two primers used in PCR synthesis of the marker cassette are complementary to the tagged primers. By fusion PCR, the 5' and 3' PCR products are linked to the marker cassette via the regions of tagged primers that overlap. A sufficient amount of the disruption construct can be directly amplified with the outermost primers. This method is simple, rapid and relatively inexpensive. In addition, there is the freedom of attaching long flanking regions to any selectable marker cassette.
Colony formation was the first step towards evolution of multicellularity in many macroscopic organisms. Dictyostelid social amoebas have used this strategy for over 600 Myr to form fruiting structures of increasing complexity. To understand in which order multicellular complexity evolved, we measured 24 phenotypic characters over 99 dictyostelid species. Using phylogenetic comparative methods, we show that the last common ancestor (LCA) of Dictyostelia probably erected small fruiting structures directly from aggregates. It secreted cAMP to coordinate fruiting body morphogenesis, and another compound to mediate aggregation. This phenotype persisted up to the LCAs of three of the four major groups of Dictyostelia. The group 4 LCA co-opted cAMP for aggregation and evolved much larger fruiting structures. However, it lost encystation, the survival strategy of solitary amoebas that is retained by many species in groups 1–3. Large structures, phototropism and a migrating intermediate ‘slug’ stage coevolved as evolutionary novelties within most groups. Overall, dictyostelids show considerable plasticity in the size and shape of multicellular structures, both within and between species. This probably reflects constraints placed by colonial life on developmental control mechanisms, which, depending on local cell density, need to direct from 10 to a million cells into forming a functional fructification.
SummaryDifferential gene expression of Dictyostelium discoideum after infection with Legionella pneumophila was investigated using DNA microarrays. Investigation of a 48 h time course of infection revealed several clusters of co-regulated genes, an enrichment of preferentially up-or downregulated genes in distinct functional categories and also showed that most of the transcriptional changes occurred 24 h after infection. A detailed analysis of the 24 h time point post infection was performed in comparison to three controls, uninfected cells and co-incubation with Legionella hackeliae and L. pneumophila ∆ ∆ ∆ ∆ dotA . One hundred and thirty-one differentially expressed D. discoideum genes were identified as common to all three experiments and are thought to be involved in the pathogenic response. Functional annotation of the differentially regulated genes revealed that apart from triggering a stress response Legionella apparently not only interferes with intracellular vesicle fusion and destination but also profoundly influences and exploits the metabolism of its host. For some of the identified genes, e.g. rtoA involvement in the host response has been demonstrated in a recent study, for others such a role appears plausible. The results provide the basis for a better understanding of the complex host-pathogen interactions and for further studies on the Dictyostelium response to Legionella infection.
Chloroplasts have evolved from a cyanobacterial endosymbiont and been retained for more than 1 billion years by coordinated chloroplast division in multiplying eukaryotic cells. Chloroplast division is performed by ring structures at the division site, encompassing both the inside and the outside of the two envelopes. A part of the division machinery is derived from the cyanobacterial cytokinetic activity based on the FtsZ protein. In contrast, other parts of the division machinery involve proteins specific to eukaryotes, including a member of the dynamin family. Each member of the dynamin family is involved in the division or fusion of a distinct eukaryotic membrane system. To gain insight into the kind of ancestral dynamin protein and eukaryotic membrane activity that evolved to regulate chloroplast division, we investigated the functions of the dynamin proteins that are most closely related to chloroplast division proteins. These proteins in the amoeba Dictyostelium discoideum and Arabidopsis thaliana localize at the sites of cell division, where they are involved in cytokinesis. Our results suggest that the dynamin for chloroplast division is derived from that involved in eukaryotic cytokinesis. Therefore, the chloroplast division machinery is a mixture of bacterial and eukaryotic cytokinesis components, with the latter a key factor in the synchronization of endosymbiotic cell division with host cell division, thus helping to establish the permanent endosymbiotic relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.