beta-Alanine aminotransferase from rabbit liver has been purified 1,700-fold over the initial liver extract. The purified enzyme was shown to be homogeneous by disc electrophoresis and SDS polyacrylamide electrophoresis. The molecular weight of the purified enzyme determined by gel filtration was 95,000 +/- 5,700 and the subunit molecular weight was 48,000 +/- 2,100. The enzyme showed absorption maxima at 282, 330, and 414 nm and contained only 1 mol of pyridoxal 5'-phosphate/mol of dimer. The pH optimum for enzyme activity was 8.8 and the Km values for beta-alanine and 2-oxoglutaric acid were calculated to be 3.9 and 1.4 mM, respectively. The enzyme catalyzed transamination of various omega-amino acids with 2-oxoglutaric acid, which was a favourable amino acceptor. beta-Alanine, gamma-aminobutyric acid, and beta-aminoisobutyric acid, which are naturally occurring substrates, were preferred amino donors, but taurine, alanine, ornithine, spermine, and spermidine were not. 6-Azauracil inhibited the enzyme activity with a Ki of approximately 1.5 mM. From the above properties, beta-alanine aminotransferase from rabbit liver was seen to closely resemble with 4-aminobutyrate aminotransferase from liver and brain.
Among uracil derivatives investigated, 6-azauracil, 6-azathymine, and 5-iodouracil were found to be potent inhibitors of purified rabbit liver 4-aminobutyrate aminotransferase while 6-azauridine and 6-azauridine 5'-phosphate were not. The enzyme inhibited by 6-azauracil was reactivated by dialysis but not by addition of pyridoxal 5'-phosphate. 6-Azauracil acted as a non-competitive inhibitor with respect to beta-alanine as well as 2-oxoglutaric acid, and had a K1 of approximately 0.7 mM at pH 7.3. The kinetic data suggested that 2-oxoglutaric acid acted as an inhibitor as well as an amino acceptor for the enzyme; a catalytic site was associated with an apparent Km of 0.15 mM for 2-oxoglutaric acid and a low affinity site was associated with an I50 of approximately 5 mM for the 2-oxo acid. With inhibitory concentrations of 2-oxoglutaric acid as substrate the inhibitory effect of 6-azauracil was considerably diminished. From these findings, the inhibitory effect of 6-azauracil was revealed to be different from that of structural analogs of 4-aminobutyric acid showing that 6-azauracil is a new type of 4-aminobutyrate aminotransferase inhibitor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.