Understanding the origins of the diversity in terrestrial planets is a fundamental goal in Earth and planetary sciences. In the Solar System, Venus has a similar size and bulk composition to those of Earth, but it lacks water. Because a richer variety of exoplanets is expected to be discovered, prediction of their atmospheres and surface environments requires a general framework for planetary evolution. Here we show that terrestrial planets can be divided into two distinct types on the basis of their evolutionary history during solidification from the initially hot molten state expected from the standard formation model. Even if, apart from their orbits, they were identical just after formation, the solidified planets can have different characteristics. A type I planet, which is formed beyond a certain critical distance from the host star, solidifies within several million years. If the planet acquires water during formation, most of this water is retained and forms the earliest oceans. In contrast, on a type II planet, which is formed inside the critical distance, a magma ocean can be sustained for longer, even with a larger initial amount of water. Its duration could be as long as 100 million years if the planet is formed together with a mass of water comparable to the total inventory of the modern Earth. Hydrodynamic escape desiccates type II planets during the slow solidification process. Although Earth is categorized as type I, it is not clear which type Venus is because its orbital distance is close to the critical distance. However, because the dryness of the surface and mantle predicted for type II planets is consistent with the characteristics of Venus, it may be representative of type II planets. Also, future observations may have a chance to detect not only terrestrial exoplanets covered with water ocean but also those covered with magma ocean around a young star.
The final stage of terrestrial planet formation is known as the giant impact stage where protoplanets collide with one another to form planets. So far this stage has been mainly investigated by N-body simulations with an assumption of perfect accretion in which all collisions lead to accretion. However, this assumption breaks for collisions with high velocity and/or a large impact parameter.We derive an accretion condition for protoplanet collisions in terms of impact velocity and angle and masses of colliding bodies, from the results of numerical collision experiments. For the first time, we adopt this realistic accretion condition in N-body simulations of terrestrial planet formation from protoplanets. We compare the results with those with perfect accretion and show how the accretion condition affects terrestrial planet formation. We find that in the realistic accretion model, about half of collisions do not lead to accretion. However, the final number, mass, orbital elements, and even growth timescale of planets are barely affected by the accretion condition. For the standard protoplanetary disk model, typically two Earth-sized planets form in the terrestrial planet region over about 10 8 years in both realistic and perfect accretion models. We also find that for the realistic accretion model, the spin angular velocity is about 30% smaller than that for the perfect accretion model that is as large as the critical spin angular velocity for rotational instability. The spin angular velocity and obliquity obey Gaussian and isotropic distributions, respectively, independently of the accretion condition.
From an astrobiological point of view, special attention has been paid to the probability of habitable planets in extrasolar systems. The purpose of this study is to constrain a possible range of the mass of a terrestrial planet that can get water. We focus on the process of water production through oxidation of atmospheric hydrogen-the nebular gas having been attracted gravitationally-by oxides available at the planetary surface. For the water production to work well on a planet, a sufficient amount of hydrogen and a temperature high enough to melt the planetary surface are needed. We have simulated the structure of the atmosphere that connects with the protoplanetary nebula for wide ranges of the heat flux, the opacity, and the density of the nebular gas. We have found that both requirements are fulfilled for an Earth-mass planet for wide ranges of the parameters. We have also found that the surface temperature of planets of 0.3M E (where M E is Earth's mass) is lower than the melting temperature of silicate ($1500 K). On the other hand, a planet of more than several M E becomes a gas giant through runaway accretion of the nebular gas. Subject headingg s: astrobiology -Earth -planets and satellites: formation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.