Streptococcus intermedius is a facultatively anaerobic, opportunistic pathogen that causes purulent infections and abscess formation. The DnaK chaperone system has been characterized in several pathogenic bacteria and seems to have important functions in stress resistance and pathogenicity. However, the role of DnaK in S. intermedius remains unclear. Therefore, we constructed a dnaK knockout mutant that exhibited slow growth, thermosensitivity, accumulation of GroEL in the cell, and reduced cytotoxicity to HepG2 cells. The level of secretion of a major pathogenic factor, intermedilysin, was not affected by dnaK mutation. We further examined the function and property of the S. intermedius DnaK chaperone system by using Escherichia coli ΔdnaK and ΔrpoH mutant strains. S. intermedius DnaK could not complement the thermosensitivity of E. coli ΔdnaK mutant. However, the intact S. intermedius DnaK chaperone system could complement the thermosensitivity and acid sensitivity of E. coli ΔdnaK mutant. The S. intermedius DnaK chaperone system could regulate the activity and stability of the heat shock transcription factor σ(32) in E. coli, although S. intermedius does not utilize σ(32) for heat shock transcription. The S. intermedius DnaK chaperone system was also able to efficiently eliminate the aggregated proteins from ΔrpoH mutant cells. Overall, our data showed that the S. intermedius DnaK chaperone system has important functions in quality control of cellular proteins but has less participation in the modulation of expression of pathogenic factors.
Streptococcus intermedius is an opportunistic pathogen of humans that causes purulent infections, including brain and liver abscesses. This pathogen secretes a human-specific cytolysin, intermedilysin, which has been recognized as a major virulence factor. However, most of the expressional control mechanisms of ily are still unknown. To determine these mechanisms, we analyzed the nucleotide sequence of the ily promoter region. We found a highly homologous region to the catabolite-repressible element (cre) in the ily promoter region and observed a considerable decrease in the amount of secreted intermedilysin when cells were grown in a culture medium containing high concentrations of glucose/utilizable carbohydrates. Disruption of the ccpA gene, which encodes catabolite control protein A, did not induce catabolite repression of ily by glucose/utilizable carbohydrates. In cre mutants, catabolite repression of ily was partially restored, and purified catabolite control protein A bound to an oligonucleotide containing the cre consensus sequence in the ily promoter region. In addition, a prolonged lag phase and slower doubling time of the ccpA mutant cells were observed. Our data show that S. intermedius can modulate ily expression and growth rate through catabolite control protein A-mediated monitoring of the extracellular glucose/utilizable carbohydrate concentration.
e Streptococcus intermedius secretes a human-specific cytolysin, intermedilysin (ILY), which is considered to be the major virulence factor of this pathogen. We screened for a repressor of ily expression by using random gene disruption in a low-ILY-producing strain (PC574). Three independent high-ILY-producing colonies that had plasmid insertions within a gene that has high homology to lacR were isolated. Validation of these observations was achieved through disruption of lacR in strain PC574 with an erythromycin cassette, which also led to higher hemolytic activity, increased transcription of ily, and higher cytotoxicity against HepG2 cells, compared to the parental strain. The direct binding of LacR within the ily promoter region was shown by a biotinylated DNA probe pulldown assay, and the amount of ILY secreted into the culture supernatant by PC574 cells was increased by adding lactose or galactose to the medium as a carbon source. Furthermore, we examined lacR nucleotide sequences and the hemolytic activity of 50 strains isolated from clinical infections and 7 strains isolated from dental plaque. Of the 50 strains isolated from infections, 13 showed high ILY production, 11 of these 13 strains had one or more point mutations and/or an insertion mutation in LacR, and almost all mutations were associated with a marked decline in LacR function. These results strongly suggest that mutation in lacR is required for the overproduction of ILY, which is associated with an increase in pathogenicity of S. intermedius. Streptococcus intermedius is a facultatively anaerobic member of the normal flora of the human oral cavity and the upper respiratory, gastrointestinal, and female urogenital tracts. S. intermedius belongs to the Anginosus group of streptococci (AGS), which also includes Streptococcus anginosus and Streptococcus constellatus (1, 2). AGS tend to form local suppurative infections, and these organisms are the most common pathogens associated with bacterial intracerebral abscesses (1-6). S. intermedius is the most pathogenic species of AGS and a leading cause of deepseated, serious purulent infections, including brain and liver abscesses (1, 2). This pathogen secretes a human-specific cytolysin, intermedilysin (ILY), which was originally identified in studies using an S. intermedius strain, UNS46, isolated from a human liver abscess (7). ILY is a member of the cholesteroldependent cytolysin (CDC) family and is considered the major virulence factor for infectivity and cytotoxicity toward human cells by S. intermedius (8-11). Therefore, investigation of the mechanisms that regulate ily expression could help elucidate how S. intermedius mediates its pathogenicity by controlling the amount of ILY secreted. To date, two factors have been reported to control the expression of ily. The first is autoinducer 2 (AI-2) (a LuxS product used by several bacteria in quorum-sensing signaling), which is reported to be an exponential-growth-phase-specific activator of ily transcription (12). In addition, we recently revealed th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.