It has been shown previously that deoxyguanosine residues in DNA are hydroxylated at the C-8 position both in vitro and in vivo to produce 8-hydroxydeoxyguanosine (8-OH-dG) by various agents that produce oxygen radicals such as reducing reagents-O2, metal ions-O2, polyphenol-H2O2-Fe3+, asbestos-H2O2 or ionizing radiation. These agents are mostly either mutagenic or carcinogenic; therefore, the formation of 8-OH-dG can also be considered a likely cause of mutation or carcinogenesis by oxygen radicals. It is of interest to know whether the 8-OH-dG residue in DNA is misread during DNA replication. To answer this question, we have examined the effect of the 8-OH-dG residue in DNA on the fidelity of DNA replication using a DNA synthesis system in vitro with Escherichia coli DNA polymerase I (Klenow fragment). The synthetic oligodeoxynucleotides, with or without an 8-OH-dG residue in a specified position, were chemically synthesized and used as templates for DNA synthesis under the conditions of the dideoxy chain termination sequencing method. Surprisingly, in addition to misreading of the 8-OH-dG residue itself, pyrimidines next to the 8-OH-dG residue (G has not yet been tested) were also misread.
2'-O-Methyl derivatives of the common ribonucleosides except for guanosine were synthesized via the 2'-O-methylation of appropriately-protected nucleosides with CH3I in the presence of Ag2O. The 2'-O-methylguanosine derivative was prepared by the monomethylation of a 2',3'-cis-diol system with diazomethane. These derivatives were converted to protected 2'-O-methylribonucleoside 3'-phosphates and used for oligonucleotide synthesis on polymer supports. Thus, oligo(2'-O-methyl-ribonucleotides) having the sequence identical to the consensus sequence of the 5'-splice junction CAGGUAAGU and its complement were synthesized in a stepwise manner using the phosphotriester method. Thermal stabilities (Tm's) of the duplex of these 2'-O-methyl ribo-oligomers and eight related duplexes containing ribo- or deoxyribo-oligomers were examined. It was found that the 2'-O-methyl oligoribonucleotides can be utilized as an alternative to an oligoribonucleotide probe in RNA hybridizations as the hybrid formed has a high, or a higher Tm, the probe is much easier to synthesize and it is less likely to be enzymatically degraded.
The effects of hydroxylation at the C8 of a deoxyguanosine residue in DNA were studied by NMR analysis of a self-complementary dodecanucleotide, d(C1-G2-C3-oh8G4-A5-A6-T7-T8-C9-G10-C11-G12), which has an 8-hydroxy-2'-deoxyguanosine (oh8dG) residue at the 4th position. NMR data indicate that the 8-hydroxyguanine (oh8G) base takes a 6,8-diketo tautomeric form and is base-paired to C with Watson-Crick type hydrogen bonds in a B-form structure. The thermal stability of the duplex is reduced, but the overall structure is much the same as that of the unmodified d(CGCGAATTCGCG) duplex. The structural changes caused by 8-hydroxylation of the deoxyguanosine, if any, are localized near the modification site.
We found that, in the presence of chimeric oligonucleotides containing complementary deoxyribo-and 2'-Omethylnucleosides, a nonaribonucleotide, [5'-32 P]pACUUACCUG, was cleaved specifically upon treatment with RNase H. When 3'm(UG)d(AATG)m(GAC)5' was used as a hybridization strand, *pACUUACCUG was cleaved between C6 and C7 to yield *pACUUAC. In the presence of 3'm(UGAA)d(TGGA)m(C)5', the nonaribonucleotide was hydrolyzed, mainly between U8 and C9, to give +pACUUACCU. This method will have a variety of applications in the field of RNA engineering.
A thrombopoietic factor, termed thrombopoietin (TPO), was highly purified directly from the plasma of sublethally irradiated 1,100 rats by measuring the production of megakaryocytes from a highly enriched population of rat megakaryocyte progenitor cells (CFU-MK). The rat plasma TPO is a glycoprotein and strongly hydrophobic. The total activity and purification yields obtained were about 29% and 1.49 x 10(8), respectively. The amino acid sequences of the two peptide fragments prepared from the purified 19 kDa TPO were analyzed, and used for the cloning of rat and human TPO cDNAs. It was found that the 19 kDa TPO was truncated but comprised at least 163 amino acids. The sequence of human TPO cDNA revealed that the TPO was identical to the c-Mpl ligand. Both rat and human TPOs expressed in COS-1 cells exhibited significant activity toward the CFU-MK in vitro, and were active in stimulating platelet production in mice. These results indicate that a thrombopoietic factor originally found in the irradiated rat plasma is a ligand for the rat c-Mpl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.