Experiments are reported on two techniques for melt-texture processing Ba2YCu3O6.5 by directional solidification from a semisolid melt containing particles of BaY2CuO5 and a copper-rich liquid. One of these employs an electric resistance furnace with ambient or oxygen enriched atmosphere; the other is a laser-heated furnace operating at 1.3 atm oxygen. Solidification interface morphologies and other structural features were examined in quenched specimens. Depending on growth rate and temperature gradient, three different types of growth morphologies of the growing 123 phase were observed: ‘‘faceted plane front,’’ ‘‘cellular dendritic’’ or ‘‘equiaxed blocky.’’ The interface temperature decreased markedly with increasing growth rate for the faceted plane front specimens. In the remaining specimens, solidification took place over a range of temperatures. The temperature of the ‘‘root’’ of the solidification front dropped, but temperature of the solidification front ‘‘tip’’ did not. A solidification model is developed and employed to interpret experimental observations. The model assumes limited diffusion of solute in the liquid during the growth of the superconducting phase. The model shows, in agreement with experiment, that growth rate of the low temperature solid phase has a strong effect on ability to obtain the desirable faceted plane front, and that thermal gradient has only a small effect. Interparticle spacing of the high temperature phase, BaY2CuO5, is also predicted to have a strong effect.
This study evaluates the acceptability of home energy management systems (HEMS) in New York and Tokyo using a questionnaire survey. We investigated three basic functions of HEMS: money saving, automatic control, and environmental impact, and then quantified people’s propensity to accept each of these three functions by measuring their willingness to pay. Using the willingness to pay results, we estimated the demand probability under a given usage price for each of the three functions of home energy management systems and analyzed how socio-economic and demographic factors influence the demand probability. The demand probability related to a home energy management system function decreases as the usage price of the function increases. However, depending on people’s socio-economic characteristics, the rate of decrease in demand probability relative to the rate of increase in usage price varies. Among the three functions of home energy management systems, we found that the automatic control function showed the highest demand probability in New York and Tokyo, emphasizing the significance of an automatic control function. In New York, when the home energy management system has an automatic control function, its demand probability increases, which is further enhanced if people trust their utility company. In Tokyo, when a home energy management system has an environmental impact function, its demand probability increases at a given price. People in Tokyo have anxieties related to new technologies such as home energy management systems. Therefore, it is necessary to enhance their comprehension of a home energy management systems to address this anxiety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.