We previously reported that (-)-epigallocatechin gallate (EGCG) in green tea alters plasma membrane organization and causes internalization of epidermal growth factor receptor (EGFR), resulting in the suppression of colon cancer cell growth. In the present study, we investigated the detailed mechanism underlying EGCG-induced downregulation of EGFR in SW480 colon cancer cells. Prolonged exposure to EGCG caused EGFR degradation. However, EGCG required neither an ubiquitin ligase (c-Cbl) binding to EGFR nor a phosphorylation of EGFR at tyrosine residues, both of which are reportedly necessary for EGFR degradation induced by epidermal growth factor. In addition, EGCG induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), a stress-inducible kinase believed to negatively regulate tumorigenesis, and the inhibition of p38 MAPK by SB203580, a specific p38 MAPK inhibitor, or the gene silencing using p38 MAPK-small interfering RNA (siRNA) suppressed the internalization and subsequent degradation of EGFR induced by EGCG. EGFR underwent a gel mobility shift upon treatment with EGCG and this was canceled by SB203580, indicating that EGCG causes EGFR phosphorylation via p38 MAPK. Moreover, EGCG caused phosphorylation of EGFR at Ser1046/1047, a site that is critical for its downregulation and this was also suppressed by SB203580 or siRNA of p38 MAPK. Taken together, our results strongly suggest that phosphorylation of EGFR at serine 1046/1047 via activation of p38 MAPK plays a pivotal role in EGCG-induced downregulation of EGFR in colon cancer cells.
We have previously reported that various stimuli, including sphingosine 1-phosphate, are able to induce heat shock protein (HSP) 27 in osteoblast-like MC3T3-E1 cells. However, the precise role of HSP27 in bone metabolism has not been satisfactory clarified. In this study, we investigated the effect of HSP27 on osteocalcin synthesis induced by bone morphogenetic protein (BMP)-4 or T₃ in these cells. In MC3T3-E1 cells, pretreatment with sphingosine 1-phosphate, sodium arsenite, or heat stress caused the attenuation of osteocalcin synthesis induced by BMP-4 or T₃ with concurrent HSP27 induction. To further investigate the effect of HSP27, we established stable HSP27-transfected cells. The osteocalcin synthesis was significantly reduced in the stable HSP27-transfected MC3T3-E1 cells and normal human osteoblasts compared with empty-vector transfected cells. On the other hand, anisomycin, a p38 MAPK activator, caused the phosphorylation of HSP27 in both sphingosine 1-phosphate-stimulated untransfected MC3T3-E1 cells and HSP27-transfected MC3T3-E1 cells. An immunofluorescence microscopy study showed that the phosphorylated HSP27 induced by anisomycin concentrated perinuclearly in these cells, in which it colocalized with the endoplasmic reticulum. We also established stable mutant-HSP27-transfected cells. Osteocalcin synthesis induced by either BMP-4 or T₃ was markedly suppressed in the nonphosphorylatable HSP27-overexpressing MC3T3-E1 cells compared with the phosphomimic HSP27-overexpressing cells. In contrast, the matrix mineralization was more obvious in nonphosphorylatable HSP27-overexpressing cells than that in phosphomimic HSP27-overexpressing cells. Taken together, these results strongly suggest that unphosphorylated HSP27 has an inhibitory effect on osteocalcin synthesis, but has a stimulatory effect on mineralization, in osteoblasts.
We previously showed that the mitogen-activated protein (MAP) kinase superfamily, p44/p42 MAP kinase, p38 MAP kinase, and stress-activated protein kinase (SAPK)/c-Jun N-terminal (JNK), positively plays a part in the platelet-derived growth factor-BB- (PDGF-BB-) stimulated synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, in osteoblast-like MC3T3-E1 cells while Akt and p70 S6 kinase negatively regulates the synthesis. In the present study, we investigated whether (-)-epigallocatechin gallate (EGCG), one of the major green tea flavonoids, affects the synthesis of IL-6 in these cells and the mechanism. EGCG significantly reduced the IL-6 synthesis and IL-6 mRNA expression stimulated by PDGF-BB, EGCG reduced the PDGF-BB-stimulated IL-6 synthesis also in primary-cultured osteoblasts. EGCG had no effect on the levels of osteocalcin and osteoprotegerin in MC3T3-E1 cells. The PDGF-BB-induced autophosphorylation of PDGF receptor β was not suppressed by EGCG. The PDGF-BB-induced phosphorylation of p44/p42 MAP kinase and p38 MAP kinase was not affected by EGCG. On the other hand, EGCG markedly suppressed the PDGF-BB-induced phosphorylation of SAPK/JNK. Finally, the PDGF-BB-induced phosphorylation of Akt and p70 S6 kinase was not affected by EGCG. These results strongly suggest that EGCG inhibits the PDGF-BB-stimulated synthesis of IL-6 via suppression of SAPK/JNK pathway in osteoblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.