Stem cells which have the capacity to self-renew and generate differentiated progeny are thought to be maintained in a specific environment known as a niche. The localization of the niche, however, remains largely obscure for most stem-cell systems. Melanocytes (pigment cells) in hair follicles proliferate and differentiate closely coupled to the hair regeneration cycle. Here we report that stem cells of the melanocyte lineage can be identified, using Dct-lacZ transgenic mice, in the lower permanent portion of mouse hair follicles throughout the hair cycle. It is only the population in this region that fulfils the criteria for stem cells, being immature, slow cycling, self-maintaining and fully competent in regenerating progeny on activation at early anagen (the growing phase of hair follicles). Induction of the re-pigmentation process in K14-steel factor transgenic mice demonstrates that a portion of amplifying stem-cell progeny can migrate out from the niche and retain sufficient self-renewing capability to function as stem cells after repopulation into vacant niches. Our data indicate that the niche has a dominant role in the fate determination of melanocyte stem-cell progeny.
The upper region of the outer root sheath of vibrissal follicles of adult mice contains multipotent stem cells that respond to morphogenetic signals to generate multiple hair follicles, sebaceous glands, and epidermis, i.e., all the lineages of the hairy skin. At the time when hair production ceases and when the lower region of the follicle undergoes major structural changes, the lower region contains a significant number of clonogenic keratinocytes, and can then respond to morphogenetic signals. This demonstrates that multipotent stem cells migrate to the root of the follicle to produce whisker growth. Moreover, our results indicate that the clonogenic keratinocytes are closely related, if not identical, to the multipotent stem cells, and that the regulation of whisker growth necessitates a precise control of stem cell trafficking.
Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are signal transducers for several members of the TNF receptor superfamily. We have identified a novel member of the TRAF family by degenerate oligonucleotide polymerase chain reaction amplification that contains a zinc RING finger and zinc finger motifs, a coiled-coil region, and a C-terminal "TRAF" homology domain. In vitro translated TRAF5 binds to the cytoplasmic region of the lymphotoxin-beta receptor (LT-betaR) but not to several other related receptors including CD40, both TNF receptors, Fas, and nerve growth factor receptor. TRAF5 and LT-betaR coimmunoprecipitate when overexpressed in COS7 cells. TRAF5 mRNA expression is found in all visceral organs and overlaps with LT-betaR. These features distinguish TRAF5 from the other members of the TRAF family. The transcription factor NF-kappaB is activated in HEK293 cells by overexpression of full-length TRAF5 but not a truncated form lacking the zinc binding region. Furthermore, overexpression of LT-betaR in HEK293 cells also results in activation of NF-kappaB, which is partially inhibited by the truncated TRAF5 mutant. These results show TRAF5 is functionally similar to TRAF2 in that both mediate activation NF-kappaB and implicate TRAF5 as a signal transducer for LT-betaR.
Adult stem cells are essential for tissue renewal, regeneration, and repair, and their expansion in culture is of paramount importance for regenerative medicine. Using the whisker follicle of the rat as a model system, we demonstrate that (i) clonogenicity is an intrinsic property of the adult stem cells of the hair follicle; (ii) after cultivation for >140 doublings, these stem cells, transplanted to the dermo-epidermal junction of newborn mouse skin, form part or all of the developing follicles; (iii) the stem cells incorporated into follicles are multipotent, because they generate all of the lineages of the hair follicle and sebaceous gland; (iv) thousands of hair follicles can be generated from the progeny of a single cultivated stem cell; (v) cultured stem cells express the self-renewal genes Bmi1 and Zfp145; (vi) several stem cells participate in the formation of a single hair bulb; and (vii) there are many more stem cells in whisker follicles than could be anticipated from label-retaining experiments.skin ͉ transplantation
CD27, a member of the TNF receptor superfamily, has been implicated in T cell activation, T cell development, and T cell-dependent Ab production by B cells. In the present study we examined the expression and function of CD27 on murine NK cells. Murine NK cells constitutively expressed CD27 on their surface. Stimulation with immobilized anti-CD27 mAb or murine CD27 ligand (CD70) transfectans solely could induce proliferation and IFN-γ production of freshly isolated NK cells and enhanced the proliferation and IFN-γ production of anti-NK1.1-sutimulated NK cells. Although NK cell cytotoxicity was not triggered by anti-CD27 mAb or against CD70 transfectants, prestimulation via CD27 enhanced the cytotoxic activity of NK cells in an IFN-γ-dependent manner. These results suggest that CD27-mediated activation may be involved in the NK cell-mediated innate immunity against virus-infected or transformed cells expressing CD70.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.