Rational design strategies based on practical fluorescence modulation mechanisms would enable us to rapidly develop novel fluorescence probes for target molecules. Here, we present a practical and general principle for modulating the fluorescence properties of fluorescein. We hypothesized that (a) the fluorescein molecule can be divided into two moieties, i.e., the xanthene moiety as a fluorophore and the benzene moiety as a fluorescence-controlling moiety, even though there is no obvious linker structure between them, and (b) the fluorescence properties can be modulated via a photoinduced electron transfer (PeT) process from the excited fluorophore to a reducible benzene moiety (donor-excited PeT; d-PeT). To evaluate the relationship between the reduction potential of the benzene moiety and the fluorescence properties, we designed and synthesized various derivatives in which the reduction potential of the benzene moiety was fine tuned by introducing electron-withdrawing groups onto the benzene moiety. Our results clearly show that the fluorescence properties of fluorescein derivatives were indeed finely modulated depending upon the reduction potential of the benzene moiety. This information provides a basis for a practical strategy for rational design of novel functional fluorescence probes.
Autotaxin (ATX) or nucleotide pyrophosphatase/phosphodiesterase 2 (NPP2) is an NPP family member that promotes tumor cell motility, experimental metastasis, and angiogenesis. ATX primarily functions as a lysophospholipase D, generating the lipid mediator lysophosphatidic acid (LPA) from lysophosphatidylcholine. ATX uses a single catalytic site for the hydrolysis of both lipid and non-lipid phosphodiesters, but its regulation is not well understood. Using a new fluorescence resonance energy transfer-based phosphodiesterase sensor that reports ATX activity with high sensitivity, we show here that ATX is potently and specifically inhibited by LPA and sphingosine 1-phosphate (S1P) in a mixed-type manner (K i ϳ 10 ؊7 M). The homologous ecto-phosphodiesterase NPP1, which lacks lysophospholipase D activity, is insensitive to LPA and S1P. Our results suggest that, by repressing ATX activity, LPA can regulate its own biosynthesis in the extracellular environment, and they reveal a novel role for S1P as an inhibitor of ATX, in addition to its well established role as a receptor ligand. Autotaxin (ATX)1 is a member of the nucleotide pyrophosphatase/phosphodiesterase (NPP) family of ecto-enzymes that hydrolyze phosphodiester bonds in various nucleotides and nucleotide derivatives (1-3). ATX, also termed NPP2, was originally isolated as an autocrine motility factor for melanoma cells (4, 5) and later found to enhance the invasive and metastatic potential of Ras-transformed NIH3T3 cells in nude mice and to induce an angiogenic response in Matrigel plug assays (6, 7). ATX mRNA is overexpressed in various human cancers, adding support to a link between ATX and tumor progression (8). Expression analysis has further suggested a normal physiological role for ATX in neurogenesis, oligodendrocyte differentiation, and myelination (9, 10).The mode of action of ATX/NPP2 has long been elusive because the biological effects of ATX could not be explained by nucleotide hydrolysis. The surprise came when it was discovered that ATX is identical to plasma lysophospholipase D (lyso-PLD) and acts by hydrolyzing lysophospatidylcholine (LPC) into lysophosphatidic acid (LPA) (11, 12), a lipid mediator that signals cell proliferation, migration, and survival via specific G protein-coupled receptors (13). It has now become clear that de novo production of LPA can fully account for the biological effects of ATX observed in cell culture. The lysophospholipid substrate range of ATX has recently been broadened by showing that the enzyme can also hydrolyze sphingosylphosphorylcholine (SPC) to yield sphingosine 1-phosphate (S1P) (14), a bioactive lipid with signaling properties very similar to those of LPA while acting on distinct receptors (15-17). The physiological significance of the SPC-to-S1P conversion is debatable, however, because the reported K m of ATX for SPC (14) is 3 orders of magnitude higher than the normal SPC levels in plasma and serum (18). Rather than through SPC hydrolysis, S1P is thought to originate largely from the phosphorylation o...
ABSTRACT:The risk of idiosyncratic drug toxicity (IDT) is of great concern to the pharmaceutical industry. Current hypotheses based on retrospective studies suggest that the occurrence of IDT is related to covalent binding and daily dose. We determined the covalent binding of 42 radiolabeled drugs in three test systems (human liver microsomes and hepatocytes in vitro and rat liver in vivo) to assess the risk of IDT. On the basis of safety profiles given in official documentation, tested drugs were classified into the safety categories of safe, warning, black box warning, and withdrawn. The covalent binding in each of the three test systems did not distinguish the safety categories clearly. However, when the log-normalized covalent binding was plotted against the log-normalized daily dose, the distribution of the plot in the safety categories became clear. An ordinal logistic regression analysis indicated that both covalent binding and daily dose were significantly correlated with safety category and that covalent binding in hepatocytes was the best predictor among the three systems. When two separation lines were drawn on the correlation graph between covalent binding in human hepatocytes and daily dose by a regression analysis to create three zones, 30 of 37 tested drugs were located in zones corresponding to their respective classified safety categories. In conclusion, we established a zone classification system using covalent binding in human hepatocytes and daily dose for the risk assessment of IDTs.
Ratiometric measurement is a technique that can provide precise data and even quantitative detection. To carry out ratiometric measurements, it is necessary that the sensor molecule exhibits a large shift in its emission or excitation spectrum after reaction with the target molecule. Fluorescence resonance energy transfer (FRET) is one mechanism used to obtain a large spectral shift. In this study, our aim was to develop a ratiometric fluorescent sensor molecule for phosphodiesterase activity based on FRET. We designed and synthesized CPF4 with a coumarin donor, a fluorescein acceptor, and two phenyl linkers having the phosphodiester moiety interposed between them. In the emission spectrum of CPF4 in aqueous buffer excited at 370 nm, the emission of the coumarin donor was strongly quenched and the emission of the fluorescein acceptor was observed. This emission spectrum demonstrates that energy transfer from the coumarin donor to the fluorescein acceptor proceeds efficiently. Addition of a phosphodiesterase to an aqueous solution of CPF4 resulted in an increase in the donor fluorescence and a decrease in the acceptor fluorescence. CPF4 exhibited a large shift in its emission spectrum after the hydrolysis of the phosphodiester group by the enzyme. This large shift of the emission spectrum indicates that ratiometric measurements can be made by using CPF4. The method described in this paper for designing enzyme-cleavable sensor molecules based on FRET should be readily applicable to other hydrolytic enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.