Structures and properties of liquid crystalline phases formed by bent-core molecules are reviewed. At least eight phases designated as B1-B8 have been found, being unambiguously distinguished from phases formed by usual calamitic molecules due to a number of remarkable peculiarities. In addition to B1-B8 phases, smectic A-like phases and biaxial nematic phases formed by bent-core molecules are also reviewed. The most attractive aspects of this new class of liquid crystals are in polarity and chirality, despite being formed from achiral molecules. The bent-core mesogens are the first ferroelectric and antiferroelectric liquid crystals realized without introducing chirality. Spontaneous chiral deracemization at microscopic and macroscopic levels occurs and is controllable. Moreover, achiral bent-core molecules enhance system chirality. The interplay between polarity and chirality provides chiral nonlinear optic effects. Further interesting phenomena related to polarity and chirality are also reviewed.
At least two antiferroelectric liquid crystalline phases were discovered in MHPOBC. These phases appear below the usual ferroelectric Sm C* phase. Because of the alternation of the molecular tilt directions as well as the dipole orientations in successive layers, the optic axis is along the layer normal. This strong stabilization along the layer normal brings about the so-called third stable state responsible for the tristable switching. The antiferroelectric structure was strongly supported by selective reflections in oblique incidence; a full-pitch band does not appear in the antiferroelectric phases, while it does appear in the ferroelectric phase.
Any polar-ordered material with a spatially uniform polarization field is internally frustrated: The symmetry-required local preference for polarization is to be nonuniform, i.e., to be locally bouquet-like or "splayed." However, it is impossible to achieve splay of a preferred sign everywhere in space unless appropriate defects are introduced into the field. Typically, in materials like ferroelectric crystals or liquid crystals, such defects are not thermally stable, so that the local preference is globally frustrated and the polarization field remains uniform. Here, we report a class of fluid polar smectic liquid crystals in which local splay prevails in the form of periodic supermolecular-scale polarization modulation stripes coupled to layer undulation waves. The polar domains are locally chiral, and organized into patterns of alternating handedness and polarity. The fluid-layer undulations enable an extraordinary menagerie of filament and planar structures that identify such phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.