, 1993). We report here the optimal recognition motifs for SH2 domains from GRB-2, Drk, Csk, Vav, fps/fes, SHC, Syk (carboxy-terminal SH2), 3BP2, and HCP (amino-terminal SH2 domain, also called PTP1C and SHPTP1). As predicted, SH2 domains from proteins that fall into group I on the basis of a Phe or Tyr at the PiD5 position (GRB-2, 3BP2, Csk, fps/fes, Syk C-terminal SH2) select phosphopeptides with the general motif phospho-Tyr-hydrophilic (residue)-hydrophilic (residue)-hydrophobic (residue). The SH2 domains of SHC and HCP (group III proteins with Ile, Leu, or Cys at the PD5 position) selected the general motif phospho-Tyr-hydrophobic-Xxx-hydrophobic, also as predicted. Vav, which has a Thr at the PD5 position, selected phospho-Tyr-Met-Glu-Pro as the optimal motif Each SH2 domain selected a unique optimal motif distinct from motifs previously determined for other SH2 domains. These motifs are used to predict potential sites in signaling proteins for interaction with specific SH2 domain-containing proteins. The Syk SH2 domain is predicted to bind to Tyr-hydrophilic-hydrophilic-LeuIIle motifs like those repeated at 10-residue intervals in T-and B-cell receptor-associated proteins. SHC is predicted to bind to a subgroup of these same motifs. A structural basis for the association of Csk with Src family members is also suggested from these studies.The activation of cellular protein tyrosine kinases by growth factors, lymphokines, and cytokines initiates a cascade of events critical for mitosis and other cellular responses.
Three-dimensional structures of complexes of the SH2 domain of the v-src oncogene product with two phosphotyrosyl peptides have been determined by X-ray crystallography at resolutions of 1.5 and 2.0 A, respectively. A central antiparallel beta-sheet in the structure is flanked by two alpha-helices, with peptide binding mediated by the sheet, intervening loops and one of the helices. The specific recognition of phosphotyrosine involves amino-aromatic interactions between lysine and arginine side chains and the ring system in addition to hydrogen-bonding interactions with the phosphate.
TRANCE, a TNF family member, and its receptor, TRANCE-R, are critical regulators of dendritic cell and osteoclast function. Here, we demonstrate that TRANCE activates the antiapoptotic serine/threonine kinase Akt/PKB through a signaling complex involving c-Src and TRAF6. A deficiency in c-Src or addition of Src family kinase inhibitors blocks TRANCE-mediated PKB activation in osteoclasts. c-Src and TRAF6 interact with each other and with TRANCE-R upon receptor engagement. TRAF6, in turn, enhances the kinase activity of c-Src leading to tyrosine phosphorylation of downstream signaling molecules such as c-Cbl. These results define a mechanism by which TRANCE activates Src family kinases and PKB and provide evidence of cross-talk between TRAF proteins and Src family kinases.
Numerous oncogenes have been isolated from acutely transforming retroviruses. To date, the products of these viral oncogenes have been protein kinases, nuclear proteins, growth factors, or GTP-binding proteins. We have cloned the previously uncharacterized avian sarcoma virus CT10 and sequenced its genome. This virus encodes a protein, p47gag-crk, that has blocks of sequence similarity to the amino-terminal, non-catalytic region of the non-receptor class of tyrosine kinases. In addition, the structure of p47gag-crk has striking similarity to a 180-amino acid region of bovine brain phospholipase C. Biochemical data suggest that p47gag-crk activates one or several endogenous tyrosine kinases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.