Effective delivery of drug carriers selectively to the kidney is challenging because of their uptake by the reticuloendothelial system in the liver and spleen, which limits effective treatment of kidney diseases and results in side effects. To address this issue, we synthesized L-serine (Ser)-modified polyamidoamine dendrimer (PAMAM) as a potent renal targeting drug carrier. Approximately 82% of the dose was accumulated in the kidney at 3 h after i.v. injection of 111 In-labeled Ser-PAMAM in mice, while i.v. injection of 111 In-labeled unmodified PAMAM, L-threonine modified PAMAM, and L-tyrosine modified PAMAM resulted in kidney accumulations of 28%, 35%, and 31%, respectively. Single-photon emission computed tomography/computed tomography (SPECT/ CT) images also indicated that 111 In-labeled Ser-PAMAM specifically accumulated in the kidneys. An intrakidney distribution study showed that fluorescein isothiocyanate-labeled Ser-PAMAM accumulated predominantly in renal proximal tubules. Results of a cellular uptake study of Ser-PAMAM in LLC-PK1 cells in the presence of inhibitors [genistein, 5-(N-ethyl-N-isopropyl)amiloride, and lysozyme] revealed that caveolae-mediated endocytosis, micropinocytosis, and megalin were associated with the renal accumulation of Ser-PAMAM. The efficient renal distribution and angiotensinconverting enzyme (ACE) inhibition effect of captopril (CAP), an ACE inhibitor, was observed after i.v. injection of the Ser-PAMAM-CAP conjugate. These findings indicate that Ser-PAMAM is a promising renal targeting drug carrier for the treatment of kidney diseases. Thus, the results of this study demonstrate efficient renal targeting of a drug carrier via Ser modification.drug delivery | renal targeting | L-serine | dendrimer
Multinuclear osteoclasts are derived from CD11b-positive mononuclear cells in bone marrow and in circulation. FACS sorting experiments showed impaired osteoclastogenesis in RAW264.7 cells with low CD11b expression. Neutralizing antibodies and siRNA against CD11b inhibited osteoclastogenesis induced by RANKL. Although primary cultured mouse bone marrow macrophages expressed CD11a and CD11b, osteoclastogenesis induced by M-CSF and RANKL was inhibited in the presence of anti-CD11b or anti-CD18 but not anti-CD11a antibodies. Furthermore, anti-CD11b antibodies inhibited NFATc1 expression induced by M-CSF and RANKL in BMMs. These findings suggest, at least partly, an important role of CD11b in osteoclastogenesis.
The high charge–discharge rate characteristics of composite cathodes consisting of ferroelectric BaTiO3 (BT)-coated LiCoO2 (LC), synthesized via a simple sol–gel route, were evaluated, and the rate showed stepwise increases to as high as 5C. The LC–BT composite cathode annealed at 600 °C, LC–BT–600, notably retained high capacities, i.e., 122 mAh/g at 30 cycles, 5C and 99 mAh/g at 60 cycles, 5C. These capacities corresponded to 83% and 67% of the initial values and were as high as 158% and 245% of the capacities of bare LC over the same cycles, respectively. The ferroelectricity of the coated BT contributed to the improvement in high-rate performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.