[1] The fluvial export of large woody debris (LWD) was monitored in 131 reservoirs throughout Japan. Published data on the fluvial export of dissolved and particulate organic carbon were used to estimate the contributions of LWD in carbon budgets. Of all variables tested, watershed area was most important in explaining LWD carbon (LWDC) export, followed by annual precipitation. LWDC export per unit area was relatively high in small watersheds, highest in intermediate-sized watersheds, and decreased in large watersheds. In small watersheds, a large proportion of LWD retained on narrow valley floors may fragment or decay and eventually be exported in forms other than LWD. In intermediate-sized watersheds, LWD supplied from upstream and recruited by bank erosion is consistently transported downstream. In large watersheds, LWD recruitment is limited and LWD transported from upstream is stored on large floodplains. These differences in LWD recruitment, retention and transport in watersheds of different sizes lead to the proportion of LWDC in organic carbon exports to be maximum in intermediate-sized watersheds and decline rapidly in large watersheds.
Environmental DNA (eDNA) analysis has seen rapid development in the last decade, as a novel biodiversity monitoring method. Previous studies have evaluated optimal strategies, at several experimental steps of eDNA metabarcoding, for the simultaneous detection of fish species. However, optimal sampling strategies, especially the season and the location of water sampling, have not been evaluated thoroughly. To identify optimal sampling seasons and locations, we performed sampling monthly or at two‐monthly intervals throughout the year in three dam reservoirs. Water samples were collected from 15 and nine locations in the Miharu and Okawa dam reservoirs in Fukushima Prefecture, respectively, and five locations in the Sugo dam reservoir in Hyogo Prefecture, Japan. One liter of water was filtered with glass‐fiber filters, and eDNA was extracted. By performing MiFish metabarcoding, we successfully detected a total of 21, 24, and 22 fish species in Miharu, Okawa, and Sugo reservoirs, respectively. From these results, the eDNA metabarcoding method had a similar level of performance compared to conventional long‐term data. Furthermore, it was found to be effective in evaluating entire fish communities. The number of species detected by eDNA survey peaked in May in Miharu and Okawa reservoirs, and in March and June in Sugo reservoir, which corresponds with the breeding seasons of many of fish species inhabiting the reservoirs. In addition, the number of detected species was significantly higher in shore, compared to offshore samples in the Miharu reservoir, and a similar tendency was found in the other two reservoirs. Based on these results, we can conclude that the efficiency of species detection by eDNA metabarcoding could be maximized by collecting water from shore locations during the breeding seasons of the inhabiting fish. These results will contribute in the determination of sampling seasons and locations for fish fauna survey via eDNA metabarcoding, in the future.
[1] We examined the relationships between large wood (LW) export and precipitation patterns and intensity by analyzing the data on the annual volume of LW removed from 42 reservoirs and the daily precipitation at or near the reservoir sites. We also calculated the effective precipitation by considering the antecedent precipitation. Both daily and effective precipitation data were used as explanatory variables to explain LW export. The model selection revealed that the precipitation pattern and intensity controlling LW export varied with latitude in the Japanese archipelago. In small watersheds with narrow channel widths and low discharges, mass movements, such as landslides and debris flows, are major factors in the production and transport of LW. In this case, the effective precipitation required to initiate mass movements regulated the LW export and did not vary with the latitude. In intermediate and large watersheds with wide channel widths and high stream discharges, heavy rainfall and subsequent floods regulated buoyant depth, influencing the initiation of LW movement. In southern and central Japan, intense rainfall accompanied by typhoons or localized torrential downpours causes geomorphic disturbances, which introduce abundant pieces of LW into the channels. However, these pieces continue to be removed by repeated rainfall events. Therefore, LW export is supply-limited and potentially produces less LW accumulation. Conversely, in northern Japan, where typhoons and torrential downpours are rare, LW export is transport-limited because LW pieces recruited by bank erosion, tree mortality, and windthrow accumulate and persist on valley floors. These pieces may be easily exported by infrequent flooding.Citation: Seo, J. I., F. Nakamura, T. Akasaka, H. Ichiyanagi, and K. W. Chun (2012), Large wood export regulated by the pattern and intensity of precipitation along a latitudinal gradient in the Japanese archipelago, Water Resour. Res., 48, W03510,
Dam-mediated biological invasions are a serious problem all over the world. Once established in reservoirs, the invasive species have catastrophic impacts on the river ecosystems downstream, and thus, rapid monitoring of invasive species is an urgent issue for the effective removal of them and the conservation management of native ecosystems. Here, we verified the utility of environmental DNA (eDNA) analysis as a tool to effectively monitor three invasive fish species (bluegill, largemouth bass, and smallmouth bass) in reservoirs using multiplex real-time PCR. First, to determine the optimal sampling location and season to detect eDNA from these species, we analyzed the eDNA in water samples from shore and offshore sites in three reservoirs all year around. We found that eDNA detection rates either did not differ between sampling locations or were higher for shore than offshore sites. In addition, eDNA detection rates were higher in spring (breeding season of target species) and/or summer than winter. Second, we extensively surveyed the distribution of the three species in 30 reservoirs in Japan using eDNA analysis. Consequently, a single eDNA-based surveillance in summer allowed to match approximately 90% of the presence/absence of the invasive fish species known from 27 yr of administrative capture-based surveillances. Given these results, we recommend collecting the replicated water samples from shore sites in summer or the breeding season for the effective detection of invasive fish eDNA in reservoirs. Our eDNA assays with multiplex real-time PCR enable the rapid and sensitive monitoring of invasive fish distribution in reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.