Mice have an olfactory (pheromone) recognition memory located at the first relay in the sensory system. It is acquired with one-trial learning, contingent upon norepinephrine activation at mating, and lasts for several weeks. The mechanism involves Hebbian (association-dependent) changes in synaptic efficacy at dendrodendritic synapses in the accessory olfactory bulb. As a result of this memory, males made familiar by mating are recognized by the females, thereby mitigating pregnancy block. Such a memory function is biologically important to the female, as it is required to sustain pregnancy in the presence of her stud male's odors.
Female mice form an olfactory memory of male pheromones at mating; exposure to the pheromones of a strange male after that mating will block pregnancy. The formation of this memory is mediated by the accessory olfactory system, in which an increase in norepinephrine after mating reduces inhibitory transmission of gamma-aminobutyric acid from the granule cells to the mitral cells. This study shows that the activation of mGluR2, a metabotropic glutamate receptor that suppresses the gamma-aminobutyric acid inhibition of the mitral cells, permits the formation of a specific olfactory memory without the occurrence of mating by infusion of mGluR2 agonists into the female's accessory olfactory bulb. This memory faithfully reflects the memory formed at mating.
The complexity and inaccessibility of the mammalian brain prevent the localization and description of memory traces and the definition of the processes that produce memories. The model reviewed here is the olfactory recognition memory formed to male pheromones by a female mouse at mating. The memory trace has been localized to the reciprocal dendrodendritic synapse between mitral cells and granule cells in the accessory olfactory bulb. An increase in noradrenaline after mating reduces inhibitory transmission of gamma-aminobutyric acid (GABA) from the granule cells to mitral cells and induces an olfactory memory of pheromones present at mating. Recent work has shown that the activation of mGluR2, a metabotropic glutamate receptor, localized at granule cell dendrites suppresses the GABA inhibition of the mitral cells and permits the formation of a specific olfactory memory that faithfully reflects the memory formed at mating. This simple olfactory memory may provide an excellent model system with which to investigate the molecular mechanisms of the synaptic plasticity involved in learning and memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.