We provide direct evidence of plasma-induced pore formation in a cell membrane model system. We irradiated plasma on the basis of the dielectric barrier discharge onto a supported lipid bilayer (SLB). Observation with a fluorescence microscope and atomic force microscope revealed the formation of pores on the order of 10 nm–1 µm in size. Capturing these micropores in a fluid lipid membrane is a significant advantage of the SLB system, and quantitative analysis of the pores was performed. Stimulation with equilibrium chemicals (HNO3 and H2O2) indicated that other transient active species play critical roles during the poration in the SLB.
A new technique to etch a substrate as a pre-treatment prior to functional film deposition was developed using a filtered vacuum arc plasma. An Ar-dominated plasma beam was generated from filtered carbon arc plasma by introducing appropriate flow rate of Ar gas in a T-shape filtered arc deposition (T-FAD) system. The radiation spectra emitted from the filtered plasma beam in front of a substrate table were measured. The substrate was etched by the Ar-dominated plasma beam. The principal results are summarized as follows. At a high flow rate of Ar gas (50 ml/min), when the bias was applied to the substrate, the plasma was attracted toward the substrate table and the 2 substrate was well etched without film formation on the substrate. Super hard alloy (WC), bearing steel (SUJ2), and Si wafer were etched by the Ar-dominated plasma beam. The etching rate was dependent on the kind of substrate. The roughness of the substrate increased, when the etching rate was high. A pulse bias etched the substrate without roughening the substrate surface excessively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.